Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Self-assembly, science of the future

April 7th, 2008

Self-assembly, science of the future

Abstract:
In 2007, Dr Babak Amir Parviz was chosen by the MIT Technology as one of the top innovators under the age of 35, for developing the self-assembly manufacturing method.

The Genome Technology Magazine selected him as a star young genomics investigator. He has also received the National Science Foundation CAREER Award.

In his last year of high school, Amir Parviz won the Kharazmi award for designing a single-engine airplane along with Reza Amirkhani and Amir Hossein Samakar.

The same year, he won a bronze medal from the 22nd international physics Olympiad.

Dr Amir Parviz holds a BA in English Literature from the University of Washington, a BS in Electronics Engineering from the Sharif University of Technology, an MS in Electrical Engineering and Physics as well as a PhD in Electrical Engineering from University of Michigan, and a Postdoctoral training degree in Chemistry and Chemical Biology from Harvard.

He is currently a faculty member at the Electrical Engineering Department of the University of Washington (UW) and the Associate Director of the Micro-scale Life Sciences Center at UW.

Q. Can you explain self assembly for us?

A. Self-assembly is a fundamentally and radically different way to make structures. If we look at the more conventional engineering, for example in building a car, what is done is that all the parts of the final product are made and then they are assembled (by a human or a robot) to make the final structure of the automobile.

Although this process is the most widely used one today to make engineered structures, this is not the way nature makes things. In nature, the "parts" of a final system find each other and bind on their own to form a plant, an insect etc. In nature structures 'self-assemble'.

Our group works on developing methods that would allow us to use self-assembly for building various things. For example, we have deployed a number of self-assembly techniques to build a range of functional devices from nano-scale optical waveguide to flexible circuits.

Q. Tell us more about the sciences and project which will benefit from self assembly?

A. Self-assembly is a widely applicable approach to making things. My guess is that in principle it is possible to improve the current state-of-the-art in manufacturing by orders of magnitude in terms of the minimum part size, the maximum part count, and the available material diversity if self-assembly is used.

Source:
presstv.ir

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project