Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 2008 NanoBio Symposium Preview: Paras Prasad

Paras Prasad. Speaker at the 2008 NanoBio symposium. Credit: Paras Prasad
Paras Prasad. Speaker at the 2008 NanoBio symposium. Credit: Paras Prasad

Abstract:
Cancer can't hide from light of nanobiophotonics

2008 NanoBio Symposium Preview: Paras Prasad

Baltimore, MD | Posted on April 4th, 2008

People reap the benefits of the harvesting of photons every day. Printers, DVD players, remote controls, lasers, sensors, and other similar devices all are based on photonics. But Paras Prasad, director of the Institute for Lasers, Photonics, and Biophotonics (ILPB) at the University at Buffalo, says there is much more to learn about the interaction of light with materials and its role in biomedical research. Prasad will discuss this topic at the Johns Hopkins 2008 NanoBio Symposium on May 1-2, hosted by the Institute of NanoBioTechnology.

"Photonics, in a broad sense, deals with the emission, transmission, amplification, detection, modulation, and switching of light," says Prasad. Through this manipulation of light, scientists and engineers are using photonics to discover new ways to deal with problems such as the diagnosis and treatment of disease or the generation and storage of energy.

For example, researchers at the University of Buffalo's Institute for Lasers, Photonics, and Biophotonics have developed special kinds of plastic-based nanocomposites that can be fabricated into many structures and designs, including more efficient and larger-scale solar panels to gather the sun's energy over the entire spectrum, including ultraviolet and infrared.

"Such hybrid nanocomposites can be used to harvest solar energy from larger structures in the form of tents, panels and coatings," Prasad says. Patents in this area are on file and a California-based company is now working to develop its commercial applications.

Also exciting, Prasad says, are the scientific advances in areas that marry biology, nanotechnology and photonics—nanobiophotonics. At this interface of disciplines, scientists and engineers are breaking new ground in the realms of health care and medicine, he says.

For instance, Prasad says, funding from the National Cancer Institute supports a partnership between the UB institute and researchers at Hopkins to develop better ways to diagnose and treat pancreatic cancer. Prasad's group, together with teams lead by INBT affiliated faculty members Anirban Maitra of the Sol Goldman Pancreatic Cancer Research Center and Martin Pomper at the In Vivo Cellular and Molecular Imaging Center, are working on a project that "accelerates the advance of photonics and nanotechnology out of the lab and into the cancer clinic," he adds.

Pancreatic cancer is especially deadly, says Prasad, because survival rates are poor, even when a tumor is just barely observable at microscopic scales. Therefore early detection is critical to improve outcomes. The ILPB researchers have shown effective early detection of pancreatic cancer with quantum dots and metallic nanorods that have been conjugated with antibodies that specifically target pancreatic cells.

"We are developing diagnostic and treatment methods for pancreatic cancer that capitalize on our expertise in designing targeted hybrid ceramic-polymeric nanoparticles to better image pancreatic cancer in vivo and to deliver drugs more effectively to treat it," says Prasad. "It is very exciting to see that these photonic technologies developed at the University at Buffalo are being applied to a disease where the need for earlier detection and more effective treatment is so pressing."

During his talk, Prasad also plans to highlight other nanobiophotonics research at ILPB including nanoparticles for photodynamic therapy of cancer and the use of nanoparticles in gene therapy particularly in the brain and liver. Prasad says these nanoparticles hold exciting prospects for developing new approaches for dealing with health care concerns with high societal impact, such as obesity, drug addiction and new infectious diseases.

####

About Institute for NanoBioTechnology
The Institute for NanoBioTechnology at Johns Hopkins University is revolutionizing health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

Approximately 155 faculty are affiliated with INBT and are also members of the following Johns Hopkins institutions: Krieger School of Arts and Sciences, Whiting School of Engineering, School of Medicine, Bloomberg School of Public Health, and Applied Physics Laboratory.

For more information, please click here

Contacts:

* Institute for NanoBioTechnology
214 Maryland Hall
3400 North Charles Street
Baltimore, MD 21218

*
* Phone: (410) 516-3423
* Fax: (410) 516-2355

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanobiotechnology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Photonics/Optics/Lasers

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project