Home > News > Understanding of Actuator Properties of Carbon Nanotubes Bring Micro Machines Closer
November 21st, 2007
Understanding of Actuator Properties of Carbon Nanotubes Bring Micro Machines Closer
Abstract:
Imagine machines smaller than microscopic in size working around us, in us and for us. Imagine them seeking out diseases, cleaning the environment and making the world a better place. Just as a car is a combination of a whole series of separate items, engine, suspension, wheels, electronics, chassis, etc, nanomachines too need to be constructed from a range of components.
One such component is a type of actuator to open and close things, to absorb shock, lift or lower loads and provide other forms of linear movement. It is known that forms of carbon nanotubes can function as actuators, but thanks to some new research we have a better understanding of what they do and how well they do it.
Source:
azonano.com
| Related News Press |
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||