Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Nanotechnology circuit boards

November 14th, 2007

Nanotechnology circuit boards

Abstract:
For the past several years, carbon nanotubes have been heralded as the most promising nanotechnology in the race to make faster, more powerful computers and portable electronic devices. In principle, carbon nanotubes can play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors don't work. Nanotubes have high tensile strength, ductility, resistance to heat, and relative chemical inactivity. The composition and geometry of carbon nanotubes produce a unique electronic complexity, partially due to their size, because quantum physics governs at the nanometer scale. But graphite itself is a very unusual material. While most electrical conductors can be classified as either metals or semiconductors, graphite is one of the rare materials known as a semi-metal, delicately balanced somewhere between the two. By combining graphite's semi-metallic properties with the quantum rules of energy levels and electron waves, carbon nanotubes emerge as highly unusual conductors. Among different species of nanotubes, single-walled carbon nanotubes (SWCNTs) are the most likely candidate for revolutionizing modern electronics industry. Although the electronics industry has already made significant progress in the dimensions of transistors in commercial chips, engineers still face great obstacles in continuing electronic miniaturization due to fundamental physical limits. While there are great economic incentives to shrink these personal devices further, the cost and engineering complexity of integrating carbon nanotubes into everyday electronics has been prohibitive. This challenge has stimulated a great deal of research into how to use carbon nanotubes in electronic devices, efficiently and inexpensively. One of the hottest areas of research involves the creation of large networks where carbon nanotubes can be aligned in preset patterns, allowing scientists to select a specific location and chirality for each carbon nanotube, and the ability to then integrate this network into an integrated circuit-compatible environment.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project