Home > News > Bioelectronics: Progress toward drug screening with a cell–transistor biosensor
June 26th, 2007
Bioelectronics: Progress toward drug screening with a cell–transistor biosensor
Abstract:
To develop selective measurement techniques for diagnostics, drug research, and the detection of poisons, researchers would like to combine the high specificity of biochemical reactors with universal microelectronics. Now, researchers at the Max Planck Institute for Biochemistry in Martinsried/Munich have shown that such bioelectronic hybrid systems are no longer just a utopian vision. In the journal Angewandte Chemie, they describe the coupling of a receptor to a silicon chip by means of a cell-transistor interface.
Source:
nanowerk.com
| Related News Press |
Sensors
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Nanoelectronics
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||