Home > News > The challenge of designing nanomaterials with reduced toxicity
March 1st, 2007
The challenge of designing nanomaterials with reduced toxicity
Abstract:
Obtaining an understanding, at the atomic level, of the interaction of nanomaterials with biological systems has recently become an issue of great research interest. Nanomaterials can exhibit drastically different characteristics compared to their bulk counterparts. Although the use of such materials in biological systems opens avenues for the creation of novel biosensing and alternative nanomedical technologies, these nanomaterials can also be highly toxic. A greater understanding of the interaction of nanomaterials with biological systems, especially of the interaction of nanomaterials with cell membranes, will enable scientists to take full advantage of the unique properties of nanomaterials while minimizing their adverse effects. Fullerenes and their derivatives are an important subset of nanomaterials. Fullerenes have been used as robust oxygen scavengers, anti-HIV drugs, X-ray contrast agents, and transporters for delivering antibodies. While experimental studies suggest that the toxicity of nanomaterials depends critically on their surface properties, it was also found that, in the case of fullerenes, functionalizing the molecules can reduce their toxicity notably. New work by U.S. researchers offers a mechanistic view on the different cytotoxicity of fullerenes and their functionalized derivatives - a first in this important field of nanotoxicity. The major finding is that pristine fullerene can readily jump into a lipid bilayer while the translocation of a functionalized fullerene is severely hindered due to its surface charge, leading to a much reduced toxicity.
Source:
nanowerk.com
| Related News Press |
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Safety-Nanoparticles/Risk management
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Human Interest/Art
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||