Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene nanotubes revolutionize touch screen use for prosthetic hands

Abstract:


The use of graphene nanotubes in fingerstalls made of electrically conductive silicones allowed young scientists from Motorica to make functional prosthetic hands that can interact with touch screens. The cost of cyber prostheses with such functions is 10 to 15 times lower than that of the nearest comparable solutions priced up to $30.000.

Graphene nanotubes revolutionize touch screen use for prosthetic hands

Luxembourg | Posted on August 3rd, 2021

Today, over 1.5 million handless people live worldwide. According to the World Health Organization, only 1 out of 10 people without hands in the world receives necessary prosthetics, and in developing countries, this figure is down to only 5% of all those in need. “A prosthesis should not be an expensive medical product manufactured at a small scale, but should rather become an affordable wearable electronic gadget just like a smart watch or a smart phone. We do more than just restore the functionality of the hand: we expand it,” says Vasiliy Khlebnikov, Co-Founder and Chief Development Officer at Motorica, a Russian developer and manufacturer of functional “cyber hands.”

A range of the company’s innovative products includes a prosthetic hand providing the ability to operate touch screens. This function was made possible due to fingerstalls made of electrically conductive silicone containing OCSiAl’s TUBALL graphene nanotubes, which can transmit electrical currents from the human body. These fingertips are being installed on body-powered and bionic prostheses in their basic configuration. This technology is effective for all types of modern touch-screen displays.



“More sophisticated and expensive technologies developed for bionic prostheses are available on the market today, where electrical current is generated using internal electronic circuits and sent to a fingerstall. We use electrically conductive silicone, which solves this problem without an additional current source. At a customer’s request, we can manufacture a fingerstall with a touch-screen function for all fingers of the prosthesis, but the index finger or little finger is typically enough,” said Ilya Chekh, Co-Founder and General Director of Motorica.



The scope of application of graphene nanotubes expands further. Flexible and ultra-strong graphene nanotubes resemble a long human hair in their shape; however, they are 50,000 times thinner than a hair. Due to such a unique morphology and characteristics, graphene nanotubes impart a new combination of properties to materials. In addition to silicones, they are used in dozens of other polymers and electrochemical current sources.

####

About OCSiAl Group
OCSiAl is the largest manufacturer of graphene nanotubes. The company’s capacity accounts for 97% of the world’s production capacity of this unique material. Today, OCSiAl employs over 420 people in 20 countries. More than 70 scientists are engaged in research and development in the company. More than 1,500 companies in the world are testing OCSiAl nanotubes and develop new products with them.

For more details visit: tuball.com and ocsial.com

PR contacts:



About Motorica LLC

Motorica LLC develops and manufactures traction and bionic prosthetic hands and arms for children and adults, and generates an ecosystem for users of various rehabilitation devices. Since 2016, the company has manufactured more than 2,600 prostheses for 1,500 people in 12 countries, including unique prosthetics for children who were previously turned down due to the complexity of the injury because no suitable solutions were available.

For more details visit: https://global.motorica.org/

PR contacts:

For more information, please click here

Contacts:
Anastasia Zirka
Senior PR & Advertising Manager
OCSiAl Group
+7 913 989 9239

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

Graphene/ Graphite

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

Display technology/LEDs/SS Lighting/OLEDs

Physicists from the University of Warsaw and the Military University of Technology have developed a new photonic system with electrically tuned topological features October 14th, 2022

Liquid crystal templated chiral nanomaterials October 14th, 2022

Research improves upon conventional LED displays: With new technology, LEDs can be more cost-efficient and last longer September 9th, 2022

Scientists take control of magnetism at the microscopic level: Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity August 26th, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Human Interest/Art

Drawing data in nanometer scale September 30th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021

No ink needed for these graphene artworks: Artist employs Rice University lab's laser-induced graphene as medium for ultramodern art May 3rd, 2019

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project