Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > nGimat Patents for Electronic and Optical Materials/Devices

Abstract:
nGimat announces patents covering fundamental compositions of matter and methods as well as new tunable capacitors for nGimat-designed components expected to be used in commercial and military wireless equipment

nGimat Patents for Electronic and Optical Materials/Devices

Atlanta, GA | Posted on February 13, 2006

nGimat Co. announced today the recent issuances of two U.S. patents (Nos. 6,975,500 and 6,986,955) as well as a foreign patent (GB2411661). These patents cover fundamental compositions of matter and methods as well as new tunable capacitors for nGimat-designed components expected to be used in commercial and military wireless equipment. Such components include tunable filters and phase shifters. These components are designed to allow future homeland security communications handsets to tune to multiple frequency bands as well as provide increased security of transmitted signals by beam direction. In addition, these components are anticipated to be substantially less expensive than what is currently being produced.

nGimat’s U.S. Patent No. 6,986,955, entitled “Electronic and Optical Materials,” is directed to thin films of barium strontium titanate deposited on a sapphire substrate, including C-plane sapphire. The crystalline structure of the thin films is epitaxial or near-epitaxial. Barium strontium titanate (“BST”) has properties that are particularly suitable for a variety of electronic and optical applications. Significantly, properties, such as refractive index and dielectric constant, of BST are tunable by application of a biasing electrical field. The very thin films of the invention have important promise for miniaturized electronic and electrooptical devices.

nGimat’s US Patent No. 6,975,500, entitled “Capacitor Having Improved Electrodes,” is directed to multi-layer tunable capacitors of specific configuration, including several layers. They are formed from dielectric material that has one or more discrete electrodes, each electrode being exposed to at least two thicknesses. These electrodes are surrounded by wider insulative material such that the material can be patterned into capacitors having specific values. The thin dielectric can be a tunable material so that the capacitance can be varied by adding thin electrodes that interact with direct current.

nGimat’s British Patent No. GB 2 411 611, entitled “Variable Capacitors, Composite Materials,” is directed to materials used in forming variable capacitors that can be tuned by a biasing voltage. The variable capacitors are formed from novel nanoparticles and composite materials. The invention is a method of producing nanoparticulates of elemental metal as well as a method of depositing at least a monolayer of metal nanoparticles on a substrate.

####

About nGimat:
nGimat Co. is a cost-effective manufacturer and innovator of engineered nanomaterials in the following areas: nanopowders, thin films and devices. nGimat's Combustion Chemical Vapor Deposition (CCVD) and NanoSpraySM Processes along with its Nanomiser® Device enable synthesis of nanoparticles and thin films.

For more information, please click here.

Contact:
Sandra Moreland
404-851-1535
sandra@morelandgroup.net

Copyright © nGimat

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project