Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency

Abstract:
Men build dams and huge turbines to turn the energy of waterfalls and tides into electricity. To produce hydropower on a much smaller scale, Chinese scientists have now developed a lightweight power generator based on carbon nanotube fibers suitable to convert even the energy of flowing blood in blood vessels into electricity. They describe their innovation in the journal Angewandte Chemie.

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency

Hoboken, NJ | Posted on September 11th, 2017

For thousands of years, people have used the energy of flowing or falling water for their purposes, first to power mechanical engines such as watermills, then to generate electricity by exploiting height differences in the landscape or sea tides. Using naturally flowing water as a sustainable power source has the advantage that there are (almost) no dependencies on weather or daylight. Even flexible, minute power generators that make use of the flow of biological fluids are conceivable. How such a system could work is explained by a research team from Fudan University in Shanghai, China. Huisheng Peng and his co-workers have developed a fiber with a thickness of less than a millimeter that generates electrical power when surrounded by flowing saline solution--in a thin tube or even in a blood vessel.

The construction principle of the fiber is quite simple. An ordered array of carbon nanotubes was continuously wrapped around a polymeric core. Carbon nanotubes are well known to be electroactive and mechanically stable; they can be spun and aligned in sheets. In the as-prepared electroactive threads, the carbon nanotube sheets coated the fiber core with a thickness of less than half a micron. For power generation, the thread or "fiber-shaped fluidic nanogenerator" (FFNG), as the authors call it, was connected to electrodes and immersed into flowing water or simply repeatedly dipped into a saline solution. "The electricity was derived from the relative movement between the FFNG and the solution," the scientists explained. According to the theory, an electrical double layer is created around the fiber, and then the flowing solution distorts the symmetrical charge distribution, generating an electricity gradient along the long axis.

The power output efficiency of this system was high. Compared with other types of miniature energy-harvesting devices, the FFNG was reported to show a superior power conversion efficiency of more than 20%. Other advantages are elasticity, tunability, lightweight, and one-dimensionality, thus offering prospects of exciting technological applications. The FFNG can be made stretchable just by spinning the sheets around an elastic fiber substrate. If woven into fabrics, wearable electronics become thus a very interesting option for FFNG application. Another exciting application is the harvesting of electrical energy from the bloodstream for medical applications. First tests with frog nerves proved to be successful.

###

About the Author

Huisheng Peng is Professor at the Department of Macromolecular Science and Principal Investigator at the Laboratory of Advanced Materials at Fudan University. His group develops a new family of fiber-shaped energy devices including solar cells, electrochemical capacitors, and lithium-ion batteries that are lightweight, thin, and highly integratable.

http://www.polymer.fudan.edu.cn/polymer/research/Penghs/main_en.htm

####

For more information, please click here

Contacts:
Mario Mueller

Copyright © Wiley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Wearable electronics

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Possible Futures

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Molecular Machines

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

How swarms of nanomachines could improve the efficiency of any machine September 28th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Ultrasensitive toxic gas detector October 31st, 2018

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer October 25th, 2018

TUBALL single wall carbon nanotubes: No ecotoxicity found, unlike other carbon nanotubes October 12th, 2018

Nanomedicine

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Discoveries

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

Announcements

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer October 25th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Nanobiotechnology

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project