Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > When it comes to churning out electrons, metal glass beats plastics

Abstract:
Field emission devices, which produce a steady stream of electrons, have a host of consumer, industrial, and research applications. Recent designs based on nanotubes and other nanomaterials embedded in plastics show initial promise, but have a number of drawbacks that hinder their wide-scale application. The embedded nanotubes, which serve as the source for the electrons, also enable the normally inert plastic to conduct electricity. This has the desired effect of producing a versatile and easily manufactured field emission device. But since plastics are, by nature, poor conductors of electricity, they require a high concentration of nanomaterials to function. Plastics also have low thermal stability and do not hold up well under the excess heat produced by prolonged operation.

When it comes to churning out electrons, metal glass beats plastics

College Park, MD | Posted on November 21st, 2011

A team of researchers from Monash University in Australia, in collaboration with colleagues from CSIRO Process Science and Engineering, has developed a promising and easily manufactured replacement for plastics: amorphous bulk metallic glass (ABM). These ABM alloys form amorphous materials as they cool, giving them more of a glass-like behavior. In a paper accepted for publication in the AIP's journal Applied Physics Letters, the researchers used an alloy made from magnesium, copper, and gadolinium. This metallic glass has many of plastics' desirable features. It can conform to a variety of shapes, be produced in bulk, and serve as an effective matrix for the nanotubes. Besides its high conductivity, the metallic glass' highly robust thermal properties mean that it can withstand high temperatures and still retain its shape and durability. According to the researchers, these advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

Though other composites of bulk metallic glass and carbon nanotubes have been reported before, this is the first time that such a system is being used for a functional device, such as for field emission. Electron microscopes, microwave or X-ray generation, nano-electronics, and modern display devices are all examples of the potential applications of this technology, the researchers note.

Article: "High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission" is published in Applied Physics Letters.

Authors: Pejman Hojati-Talemi (1, 2), Mark A. Gibson (3), Daniel East (1), and Geroge P. Simon (1).

(1) Monash University, Clayton, Australia
(2) University of South Australia, Mawson Lakes, Australia
(3) Commonwealth Scientific and Industrial Research Organization, Clayton, Australia

####

For more information, please click here

Contacts:
Charles E. Blue

301-209-3091

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Imaging

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Atomically thin light-emitting device opens the possibility for 'invisible' displays March 26th, 2018

Nanostructures made of previously impossible material: How do you combine different elements in a crystal? At TU Wien, a method has now been developed for incorporating previously unattainably high proportions of foreign atoms into crystals March 9th, 2018

Cleaning nanowires to get out more light March 7th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Big steps toward control of production of tiny building blocks March 9th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Nanoelectronics

Non-toxic filamentous virus helps quickly dissipate heat generated by electronic devices April 4th, 2018

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Understanding charge transfers in molecular electronics March 30th, 2018

Smaller and faster: The terahertz computer chip is now within reach: Hebrew university researcher shows proof of concept for nanotechnology that will make computers run 100 times faster March 27th, 2018

Discoveries

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

One string to rule them all April 17th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

Announcements

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

Tools

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

Thermo Scientific Krios G3i Cryo-Electron Microscope Wins Gold Edison Award: Krios G3i helps scientists better understand disease mechanisms in order to accelerate cures April 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project