Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Strain-Gating Piezotronics: Researchers Create New Class of Piezoelectric Logic Devices Using Zinc Oxide Nanowires

Georgia Tech researchers measure the performance of an array of zinc oxide nanodevices fabricated on a flexible polymer substrate. (Click image for high-resolution version. Credit: Gary Meek)
Georgia Tech researchers measure the performance of an array of zinc oxide nanodevices fabricated on a flexible polymer substrate. (Click image for high-resolution version. Credit: Gary Meek)

Abstract:
Researchers at the Georgia Institute of Technology have developed a new class of electronic logic device in which current is switched by an electric field generated by the application of mechanical strain to zinc oxide nanowires.

By John Toon

Strain-Gating Piezotronics: Researchers Create New Class of Piezoelectric Logic Devices Using Zinc Oxide Nanowires

Atlanta, GA | Posted on September 3rd, 2010

The devices, which include transistors and diodes, could be used in nanometer-scale robotics, nano-electromechanical systems (NEMS), micro-electromechanical systems (MEMS) and microfluidic devices. The mechanical action used to initiate the strain could be as simple as pushing a button, or be created by the flow of a liquid, stretching of muscles or the movement of a robotic component.

In traditional field-effect transistors, an electrical field switches - or "gates" - the flow of electrical current through a semiconductor. Instead of using an electrical signal, the new logic devices create the switching field by mechanically deforming zinc oxide nanowires. The deformation creates strain in the nanowires, generating an electric field through the piezoelectric effect - which creates electrical charge in certain crystalline materials when they are subjected to mechanical strain.

"When we apply a strain to a nanowire placed across two metal electrodes, we create a field, which is strong enough to serve as the gating voltage," said Zhong Lin Wang, a Regents professor in the Georgia Tech School of Materials Science and Engineering. "This type of device would allow mechanical action to be interfaced with electronics, and could be the basis for a new form of logic device that uses the piezoelectric potential in place of a gate voltage."

Wang, who has published a series of articles on the devices in such journals as Nano Letters, Advanced Materials and Applied Physics Letters, calls this new class of nanometer-scale device "piezotronics" because they use piezoelectric potential to tune and gate the charge transport process in semiconductors. The devices rely on the unique properties of zinc oxide nanostructures, which are both semiconducting and piezoelectric.

The transistors and diodes add to the family of nanodevices developed by Wang and his research team, and could be combined into systems in which all components are based on the same zinc oxide material. The researchers have previously announced development of nanometer-scale generators that produce a voltage by converting mechanical motion from the environment, and nanowire sensors for measuring pH and detecting ultraviolet light.

"The family of devices we have developed can be joined together to create self-powered, autonomous and intelligent nanoscale systems," Wang said. "We can create complex systems totally based on zinc oxide nanowires that have memory, processing, and sensing capabilities powered by electrical energy scavenged from the environment."

Using strain-gated transistors fabricated on a flexible polymer substrate, the researchers have demonstrated basic logic operations - including NOR, XOR and NAND gates and multiplexer/demultiplexer functions - by simply applying different types of strain to the zinc oxide nanowires. They have also created an inverter by placing strain-gated transistors on both sides of a flexible substrate.

"Using the strain-gated transistor as a building block, we can build complicated logic," Wang added. "This is the first time that a mechanical action has been used to create a logic operation."

A strain-gated transistor is made of a single zinc oxide nanowire with its two ends - the source and drain electrodes - fixed to a polymer substrate by metal contacts. Flexing the devices reverses their polarity as the strain changes from compressive to tensile on opposite sides.

The devices operate at low frequencies - the kind created by human interaction and the ambient environment - and would not challenge traditional CMOS transistors for speed in conventional applications. The devices respond to very small mechanical forces, Wang noted.

The Georgia Tech group has also learned to control conductivity in zinc oxide nanodevices using laser emissions that take advantage of the unique photo-excitation properties of the material. When ultraviolet light from a laser strikes a metal contact attached to a zinc oxide structure, it creates electron-hole pairs which change the height of the Schottky barrier at the zinc oxide-metal contact.

These conductivity-changing characteristics of the laser emissions can be used in tandem with alterations in mechanical strain to provide more precise control over the conducting capabilities of a device.

"The laser improves the conductivity of the structure," Wang noted. "The laser effect is in contrast to the piezoelectric effect. The laser effect reduces the barrier height, while the piezoelectric effect increases the barrier height."

Wang has called these new devices fabricated by coupling piezoelectric, photon excitation and semiconductor properties "piezo-phototronic" devices.

The research group has also created hybrid logic devices that use zinc oxide nanowires to control current moving through single-walled carbon nanotubes. The nanotubes, which were produced by researchers at Duke University, can be either p-type or n-type.

The research has been supported by the National Science Foundation (NSF), the Defense Advanced Research Projects Agency (DARPA), and the U.S. Department of Energy (DOE). In addition to Wang, the research team includes Wenzhuo Wu, Yaguang Wei, Youfan Hu, Weihua Liu, Minbaek Lee, Yan Zhang, Yanling Chang, Shu Xiang, Lei Ding, Jie Liu and Robert Snyder.

"Our work with strain-gated devices provides a new approach to logic operations that performs mechanical-electrical actions in one structural unit using a single material," Wang noted. "These transistors could provide new processing and memory capabilities in very small and portable devices."

####

For more information, please click here

Contacts:
Media Relations Assistance: John Toon or Abby Vogel Robinson

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Microfluidics/Nanofluidics

Dolomite and Lab on a Chip launch Productizing Science® Competition 2015 October 7th, 2014

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

NEMS

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Columbia engineers make world's smallest FM radio transmitter: Team demonstrates new application of graphene using positive feedback November 18th, 2013

Revisiting quantum effects in MEMS: New calculations shows that the influence of quantum effects on the operating conditions of nanodevices has, until now, been overestimated November 15th, 2013

Govt.-Legislation/Regulation/Funding/Policy

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

MEMS

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

Molecular Machines

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Sensors

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE