Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Strain-Gating Piezotronics: Researchers Create New Class of Piezoelectric Logic Devices Using Zinc Oxide Nanowires

Georgia Tech researchers measure the performance of an array of zinc oxide nanodevices fabricated on a flexible polymer substrate. (Click image for high-resolution version. Credit: Gary Meek)
Georgia Tech researchers measure the performance of an array of zinc oxide nanodevices fabricated on a flexible polymer substrate. (Click image for high-resolution version. Credit: Gary Meek)

Abstract:
Researchers at the Georgia Institute of Technology have developed a new class of electronic logic device in which current is switched by an electric field generated by the application of mechanical strain to zinc oxide nanowires.

By John Toon

Strain-Gating Piezotronics: Researchers Create New Class of Piezoelectric Logic Devices Using Zinc Oxide Nanowires

Atlanta, GA | Posted on September 3rd, 2010

The devices, which include transistors and diodes, could be used in nanometer-scale robotics, nano-electromechanical systems (NEMS), micro-electromechanical systems (MEMS) and microfluidic devices. The mechanical action used to initiate the strain could be as simple as pushing a button, or be created by the flow of a liquid, stretching of muscles or the movement of a robotic component.

In traditional field-effect transistors, an electrical field switches - or "gates" - the flow of electrical current through a semiconductor. Instead of using an electrical signal, the new logic devices create the switching field by mechanically deforming zinc oxide nanowires. The deformation creates strain in the nanowires, generating an electric field through the piezoelectric effect - which creates electrical charge in certain crystalline materials when they are subjected to mechanical strain.

"When we apply a strain to a nanowire placed across two metal electrodes, we create a field, which is strong enough to serve as the gating voltage," said Zhong Lin Wang, a Regents professor in the Georgia Tech School of Materials Science and Engineering. "This type of device would allow mechanical action to be interfaced with electronics, and could be the basis for a new form of logic device that uses the piezoelectric potential in place of a gate voltage."

Wang, who has published a series of articles on the devices in such journals as Nano Letters, Advanced Materials and Applied Physics Letters, calls this new class of nanometer-scale device "piezotronics" because they use piezoelectric potential to tune and gate the charge transport process in semiconductors. The devices rely on the unique properties of zinc oxide nanostructures, which are both semiconducting and piezoelectric.

The transistors and diodes add to the family of nanodevices developed by Wang and his research team, and could be combined into systems in which all components are based on the same zinc oxide material. The researchers have previously announced development of nanometer-scale generators that produce a voltage by converting mechanical motion from the environment, and nanowire sensors for measuring pH and detecting ultraviolet light.

"The family of devices we have developed can be joined together to create self-powered, autonomous and intelligent nanoscale systems," Wang said. "We can create complex systems totally based on zinc oxide nanowires that have memory, processing, and sensing capabilities powered by electrical energy scavenged from the environment."

Using strain-gated transistors fabricated on a flexible polymer substrate, the researchers have demonstrated basic logic operations - including NOR, XOR and NAND gates and multiplexer/demultiplexer functions - by simply applying different types of strain to the zinc oxide nanowires. They have also created an inverter by placing strain-gated transistors on both sides of a flexible substrate.

"Using the strain-gated transistor as a building block, we can build complicated logic," Wang added. "This is the first time that a mechanical action has been used to create a logic operation."

A strain-gated transistor is made of a single zinc oxide nanowire with its two ends - the source and drain electrodes - fixed to a polymer substrate by metal contacts. Flexing the devices reverses their polarity as the strain changes from compressive to tensile on opposite sides.

The devices operate at low frequencies - the kind created by human interaction and the ambient environment - and would not challenge traditional CMOS transistors for speed in conventional applications. The devices respond to very small mechanical forces, Wang noted.

The Georgia Tech group has also learned to control conductivity in zinc oxide nanodevices using laser emissions that take advantage of the unique photo-excitation properties of the material. When ultraviolet light from a laser strikes a metal contact attached to a zinc oxide structure, it creates electron-hole pairs which change the height of the Schottky barrier at the zinc oxide-metal contact.

These conductivity-changing characteristics of the laser emissions can be used in tandem with alterations in mechanical strain to provide more precise control over the conducting capabilities of a device.

"The laser improves the conductivity of the structure," Wang noted. "The laser effect is in contrast to the piezoelectric effect. The laser effect reduces the barrier height, while the piezoelectric effect increases the barrier height."

Wang has called these new devices fabricated by coupling piezoelectric, photon excitation and semiconductor properties "piezo-phototronic" devices.

The research group has also created hybrid logic devices that use zinc oxide nanowires to control current moving through single-walled carbon nanotubes. The nanotubes, which were produced by researchers at Duke University, can be either p-type or n-type.

The research has been supported by the National Science Foundation (NSF), the Defense Advanced Research Projects Agency (DARPA), and the U.S. Department of Energy (DOE). In addition to Wang, the research team includes Wenzhuo Wu, Yaguang Wei, Youfan Hu, Weihua Liu, Minbaek Lee, Yan Zhang, Yanling Chang, Shu Xiang, Lei Ding, Jie Liu and Robert Snyder.

"Our work with strain-gated devices provides a new approach to logic operations that performs mechanical-electrical actions in one structural unit using a single material," Wang noted. "These transistors could provide new processing and memory capabilities in very small and portable devices."

####

For more information, please click here

Contacts:
Media Relations Assistance: John Toon or Abby Vogel Robinson

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Microfluidics/Nanofluidics

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Nanoscale assembly line August 29th, 2014

NEMS

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Columbia engineers make world's smallest FM radio transmitter: Team demonstrates new application of graphene using positive feedback November 18th, 2013

Revisiting quantum effects in MEMS: New calculations shows that the influence of quantum effects on the operating conditions of nanodevices has, until now, been overestimated November 15th, 2013

Govt.-Legislation/Regulation/Funding/Policy

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

MEMS

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

Mirrorcle Technologies Opens New Company Headquarters May 27th, 2014

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Chip Technology

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Sensors

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Nanoscience makes your wine better September 17th, 2014

Nanoelectronics

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Announcements

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE