Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rutgers researchers develop method with single-molecule precision to engineer enzyme ‘stickiness’: The method aids in optimizing enzymes or proteins ‘stickiness’ for diverse biotechnological applications

Markus Hackl, a doctoral candidate in the Department of Chemical and Biochemical Engineering at Rutgers, led the development of the toolkit.
Courtesy of Markus Hackl
Markus Hackl, a doctoral candidate in the Department of Chemical and Biochemical Engineering at Rutgers, led the development of the toolkit. Courtesy of Markus Hackl

Abstract:
Rutgers scientists have developed an analytical toolkit to measure the binding forces of single proteins when they are pulled away from their substrate – such as an enzyme – that will help the development of new nanomaterials, improve biofuel production and global carbon cycling, and identify new and better drug targets, according to a new study.

Rutgers researchers develop method with single-molecule precision to engineer enzyme ‘stickiness’: The method aids in optimizing enzymes or proteins ‘stickiness’ for diverse biotechnological applications

New Brunswick | Posted on October 14th, 2022

The study, published in the Proceedings of the National Academy of Sciences, examines the molecular interactions between a carbohydrate binding module (CBM) protein and its binding substrate cellulose. Cellulose, a type of plant fiber polymer made of repeating glucose sugars, can be used to make textiles, cellophane, paperboard and paper, in addition to serving as renewable feedstock to produce biofuels and biochemicals.

Cellulose is the most abundant organic compound on Earth that is naturally decomposed by microorganisms and hence plays a central role in the global carbon cycle. However, scientists still have a limited understanding of how microorganisms like bacteria breakdown cellulose by first anchoring or ‘sticking’ to the substrate surface using carbohydrate binding proteins and enzymes.

According to Rutgers researchers, to engineer more efficient enzymes and microbes that decompose cellulose into sugars for biofuels production such as ethanol, biodiesel, green diesel or biogas, it is necessary to better understand how carbohydrate binding proteins anchor to substrates to engineer better enzymes with optimum ‘stickiness’ that can maximize cellulose decomposition by microbes.

“The binding of proteins and enzymes to complex carbohydrates at the solid-liquid interface is a fundamentally important biological phenomena relevant to plant growth, pathogen-host cell infections, and biofuels production,” said Shishir Chundawat, senior author of the study and an associate professor in the Department of Chemical and Biochemical Engineering at Rutgers. “But such interfacial binding processes are not well understood because of the lack of analytical tools to observe these subtle and short-lived molecular interactions between proteins and carbohydrates like cellulose.”

The methodology describes the researcher’s analytical technique to examine how proteins stick to cellulose surfaces with molecular-level precision, providing insight into the complex mechanisms employed by microbial enzymes during cellulose decomposition.

Chundawat said the toolkit developed at Rutgers can measure single protein-carbohydrate molecule contacts and relevant forces involved with 1 trillionth of newton precision. One newton is equivalent to the minimum force often required to unstick a gecko lizard anchored to a wall or surface.

The research team studied a CBM protein that enables bacterial cells to anchor tightly to cellulose surfaces like a gecko and changed the engineered proteins surface ‘stickiness’ as measured using this new toolkit to enhance cellulose decomposition activity. The findings from the toolkit were in agreement with other experiments and simulations conducted to further explain the underlying molecular rules that are responsible for CBM protein stickiness towards cellulose surfaces.

“If particular CBMs can stick to the carbohydrates in specific structural orientations that enhances enzymatic function, traditional methods are not able to differentiate one specific binding orientation from the other necessary to fine-tune protein stickiness for surfaces,” said Markus Hackl, first author of the study who led the development of the toolkit and a doctoral candidate in the Department of Chemical and Biochemical Engineering at Rutgers. “Our method, however, can pick up on those subtle differences in protein stickiness by detecting and measuring the signal from a single protein molecule interaction with cellulose.”

Such a toolkit can help scientists’ study and fine-tune sticky molecular interactions between proteins and carbohydrates, that ultimately aid in the development of better targeting protein-based drugs for improved healthcare or efficient industrial-grade enzymes for low-cost biofuels production.

Development of the toolkit is supported by the National Science Foundation (NSF) Division of Chemical, Bioengineering, Environmental and Transport Systems as part of a Faculty Early Career Development (CAREER) grant awarded by NSF to Chundawat in 2019.

Other Rutgers co-authors on the study include Edward Contrada, Jonathan Ash, Atharv Kulkarni, Ki-Bum Lee, Jinho Yoon, Hyeon-Yeol Cho and researchers from the National Renewable Energy Laboratory (John Yarbrough) and Los Alamos National Laboratory (Cesar López and Sandrasegaram Gnanakaran).

####

For more information, please click here

Contacts:
Megan Schumann
Rutgers University

Office: 848-445-1907

Copyright © Rutgers University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Laboratories

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

New method addresses problem with perovskite solar cells: NREL researchers provide growth approach that boosts efficiency, stability December 29th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Boron nitride with a twist could lead to new way to make qubits: Easy control over bright emissions from the crystalline material offer a route toward scalable quantum computing and sensing October 7th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Vertical electrochemical transistor pushes wearable electronics forward: Biomedical sensing is one application of efficient, low-cost transistors January 20th, 2023

Possible Futures

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Nanomedicine

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

New nanoparticles deliver therapy brain-wide, edit Alzheimer’s gene in mice: UW researchers have found a way to move gene therapies through the blood-brain barrier, a crucial step for brain-wide CRISPR treatments of disorders like Alzheimer's and Parkinson's disease January 20th, 2023

Team undertakes study of two-dimensional transition metal chalcogenides Important biomedical application, including biosensing December 9th, 2022

SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022

Discoveries

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Announcements

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

Environment

Temperature-sensing building material changes color to save energy January 27th, 2023

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Researchers create a new 3D extra-large pore zeolite that opens a new path to the decontamination of water and gas: A team of scientists with the participation of the CSIC develops an extra-large pore silica zeolite from a silicate chain January 20th, 2023

New nanowire sensors are the next step in the Internet of Things January 6th, 2023

Energy

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

New quantum computing architecture could be used to connect large-scale devices: Researchers have demonstrated directional photon emission, the first step toward extensible quantum interconnects January 6th, 2023

Nanobiotechnology

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

New nanoparticles deliver therapy brain-wide, edit Alzheimer’s gene in mice: UW researchers have found a way to move gene therapies through the blood-brain barrier, a crucial step for brain-wide CRISPR treatments of disorders like Alzheimer's and Parkinson's disease January 20th, 2023

Team undertakes study of two-dimensional transition metal chalcogenides Important biomedical application, including biosensing December 9th, 2022

SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project