Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rutgers researchers develop method with single-molecule precision to engineer enzyme ‘stickiness’: The method aids in optimizing enzymes or proteins ‘stickiness’ for diverse biotechnological applications

Markus Hackl, a doctoral candidate in the Department of Chemical and Biochemical Engineering at Rutgers, led the development of the toolkit.
Courtesy of Markus Hackl
Markus Hackl, a doctoral candidate in the Department of Chemical and Biochemical Engineering at Rutgers, led the development of the toolkit. Courtesy of Markus Hackl

Abstract:
Rutgers scientists have developed an analytical toolkit to measure the binding forces of single proteins when they are pulled away from their substrate – such as an enzyme – that will help the development of new nanomaterials, improve biofuel production and global carbon cycling, and identify new and better drug targets, according to a new study.

Rutgers researchers develop method with single-molecule precision to engineer enzyme ‘stickiness’: The method aids in optimizing enzymes or proteins ‘stickiness’ for diverse biotechnological applications

New Brunswick | Posted on October 14th, 2022

The study, published in the Proceedings of the National Academy of Sciences, examines the molecular interactions between a carbohydrate binding module (CBM) protein and its binding substrate cellulose. Cellulose, a type of plant fiber polymer made of repeating glucose sugars, can be used to make textiles, cellophane, paperboard and paper, in addition to serving as renewable feedstock to produce biofuels and biochemicals.

Cellulose is the most abundant organic compound on Earth that is naturally decomposed by microorganisms and hence plays a central role in the global carbon cycle. However, scientists still have a limited understanding of how microorganisms like bacteria breakdown cellulose by first anchoring or ‘sticking’ to the substrate surface using carbohydrate binding proteins and enzymes.

According to Rutgers researchers, to engineer more efficient enzymes and microbes that decompose cellulose into sugars for biofuels production such as ethanol, biodiesel, green diesel or biogas, it is necessary to better understand how carbohydrate binding proteins anchor to substrates to engineer better enzymes with optimum ‘stickiness’ that can maximize cellulose decomposition by microbes.

“The binding of proteins and enzymes to complex carbohydrates at the solid-liquid interface is a fundamentally important biological phenomena relevant to plant growth, pathogen-host cell infections, and biofuels production,” said Shishir Chundawat, senior author of the study and an associate professor in the Department of Chemical and Biochemical Engineering at Rutgers. “But such interfacial binding processes are not well understood because of the lack of analytical tools to observe these subtle and short-lived molecular interactions between proteins and carbohydrates like cellulose.”

The methodology describes the researcher’s analytical technique to examine how proteins stick to cellulose surfaces with molecular-level precision, providing insight into the complex mechanisms employed by microbial enzymes during cellulose decomposition.

Chundawat said the toolkit developed at Rutgers can measure single protein-carbohydrate molecule contacts and relevant forces involved with 1 trillionth of newton precision. One newton is equivalent to the minimum force often required to unstick a gecko lizard anchored to a wall or surface.

The research team studied a CBM protein that enables bacterial cells to anchor tightly to cellulose surfaces like a gecko and changed the engineered proteins surface ‘stickiness’ as measured using this new toolkit to enhance cellulose decomposition activity. The findings from the toolkit were in agreement with other experiments and simulations conducted to further explain the underlying molecular rules that are responsible for CBM protein stickiness towards cellulose surfaces.

“If particular CBMs can stick to the carbohydrates in specific structural orientations that enhances enzymatic function, traditional methods are not able to differentiate one specific binding orientation from the other necessary to fine-tune protein stickiness for surfaces,” said Markus Hackl, first author of the study who led the development of the toolkit and a doctoral candidate in the Department of Chemical and Biochemical Engineering at Rutgers. “Our method, however, can pick up on those subtle differences in protein stickiness by detecting and measuring the signal from a single protein molecule interaction with cellulose.”

Such a toolkit can help scientists’ study and fine-tune sticky molecular interactions between proteins and carbohydrates, that ultimately aid in the development of better targeting protein-based drugs for improved healthcare or efficient industrial-grade enzymes for low-cost biofuels production.

Development of the toolkit is supported by the National Science Foundation (NSF) Division of Chemical, Bioengineering, Environmental and Transport Systems as part of a Faculty Early Career Development (CAREER) grant awarded by NSF to Chundawat in 2019.

Other Rutgers co-authors on the study include Edward Contrada, Jonathan Ash, Atharv Kulkarni, Ki-Bum Lee, Jinho Yoon, Hyeon-Yeol Cho and researchers from the National Renewable Energy Laboratory (John Yarbrough) and Los Alamos National Laboratory (Cesar López and Sandrasegaram Gnanakaran).

####

For more information, please click here

Contacts:
Megan Schumann
Rutgers University

Office: 848-445-1907

Copyright © Rutgers University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Quantum powers researchers to see the unseen September 8th, 2023

Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Possible Futures

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Nanomedicine

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Environment

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds July 21st, 2023

New single-photon Raman lidar can monitor for underwater oil leaks: System could be used aboard underwater vehicles for many applications June 30th, 2023

Energy

A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds July 21st, 2023

Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023

When all details matter -- Heat transport in energy materials June 9th, 2023

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

The present and future of computing get a boost from new research July 21st, 2023

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Nanobiotechnology

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project