Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Georgia State researchers discover novel way to treat IBD with lipid nanoparticles

Dr. Didier Merlin, a Regents’ Professor in the Institute for Biomedical Sciences at Georgia State University and a senior research career scientist at Atlanta Veterans Affairs Medical Center
CREDIT
Georgia State University
Dr. Didier Merlin, a Regents’ Professor in the Institute for Biomedical Sciences at Georgia State University and a senior research career scientist at Atlanta Veterans Affairs Medical Center CREDIT Georgia State University

Abstract:
Oral delivery of lipid nanoparticles that target the colon with nucleic acids is a novel therapeutic strategy for treating ulcerative colitis, according to a new study by researchers in the Institute for Biomedical Sciences at Georgia State University.

Georgia State researchers discover novel way to treat IBD with lipid nanoparticles

Atlanta, GA | Posted on August 26th, 2022

The researchers investigated whether orally delivering interleukin-22 (IL-22) mRNA-loaded lipid nanoparticles to the colon could be a new, effective treatment for ulcerative colitis. IL-22 expression in the colon is known to have strong anti-inflammatory effects against ulcerative colitis.

Their findings, published in the journal Biomaterials, report that mice with acute ulcerative colitis that orally received the novel lipid nanoparticles with IL-22 mRNA targeting their colon experienced accelerated healing. This demonstrates the new lipid nanoparticle-based delivery system may provide a powerful gene therapy strategy for treating ulcerative colitis.

Inflammatory bowel disease (IBD), an umbrella term for Crohn’s disease and ulcerative colitis, is a relapsing and chronic inflammatory disorder of the gastrointestinal tract that affects more than 3 million adults in the United States. The cause of disease is unknown, so it’s challenging to develop effective diagnostics and therapeutics for IBD. Most current treatments are delivered directly into the bloodstream and cause severe short- or long-term side effects, such as affecting gut bacterial or fungal function and promoting cancer development.

IL-22, a protein that regulates the stability of cells that line body surfaces and promotes wound healing during intestinal inflammation, plays a protective role against pro-inflammatory mediators and is strongly associated with genes susceptible to IBD.

Previous studies have found that injection of a lipid and IL-22 complementary DNA complex is a potentially powerful strategy for treating colitis in animals, but this requires surgery and specific injection skills. Oral delivery offers a more accessible treatment strategy and developing an oral nucleic acid delivery method for IBD treatment appears to be more valuable in improving human health.

In this study, the researchers engineered new lipid nanoparticles with three major lipids identified in ginger-derived nanoparticles used in previous studies: phosphatidic acid (PA), monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). IL-22-mRNA was encapsulated within the new lipid nanoparticles.

“Oral delivery of IL-22 lipid nanoparticles elevated the protein expression level of IL-22 in the colonic tissue of mice,” said Dr. Didier Merlin, a Regents’ Professor in the Institute for Biomedical Sciences at Georgia State and a senior research career scientist at Atlanta Veterans Affairs Medical Center. “Mice with acute colitis that were fed IL-22 lipid nanoparticles experienced an accelerated healing process, as indicated by the recovery of more body weight and colon length.”

In addition, the mice had reduced histological index, colonic myeloperoxidase activity, fecal lipocalin concentration and mRNA expression levels of pro-inflammatory cytokines.

“Our results suggest that our reversely engineered lipid nanoparticles are an excellent mRNA delivery platform for treating ulcerative colitis,” Merlin said.

Co-authors of the study include Junsik Sung (first author and graduate student) and Dingpei Long, Ph.D., of the Institute for Biomedical Sciences at Georgia State; Zahra Alghoul, Ph.D., of the Institute for Biomedical Sciences and Department of Chemistry at Georgia State; and Chunhua Yang, Ph.D., (assistant professor) and Didier Merlin, Ph.D., of the Institute for Biomedical Sciences at Georgia State and Atlanta Veterans Affairs Medical Center.

The study is funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health (NIH) and the Department of Veterans Affairs.

####

For more information, please click here

Contacts:
LaTina Emerson
Georgia State University

Office: 404-413-1353
Cell: 678-521-9219

Copyright © Georgia State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project