Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A one-stop shop for quantum sensing materials

Defects in diamond membranes could hold the key to new quantum sensing materials. (Image by Shutterstock/Jurik Peter.)
Defects in diamond membranes could hold the key to new quantum sensing materials. (Image by Shutterstock/Jurik Peter.)

Abstract:
Scientists create quantum technology platform.

The brilliant blue of the Hope Diamond is caused by small impurities in its crystal structure. Similar diamond impurities are also giving hope to scientists looking to create materials that can be used for quantum computing and quantum sensing.

A one-stop shop for quantum sensing materials

Lemont, IL | Posted on May 27th, 2022

In new research from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, researchers have created extremely thin membranes of pure diamond. In a few locations in the crystal structure of the membrane, however, the team substituted carbon atoms with other atoms, notably nitrogen. These defects connect to neighboring atomic vacancies — regions where an atom is missing — creating unusual quantum systems known as “color centers.” Such color centers are sites for storing and processing quantum information.

"...we hope this [platform] will eventually give us the ability to become a one-stop shop for quantum sensing materials.” — Xinghan Guo, University of Chicago

This work was supported primarily by DOE's Office of Basic Energy Sciences, Materials Sciences and Engineering division, with support from Q-NEXT, a DOE National Quantum Information Science Research Center led by Argonne.

Equipped with a way to cheaply and easily create diamond membranes that have robust color centers, scientists at Argonne hope to build a kind of assembly line for generating large numbers of these membranes for quantum experiments around the world.

The ability to grow the membranes could be the ticket to enhancing collaboration between different laboratories devoted to quantum information science, said University of Chicago graduate student Xinghan Guo, lead author of the study.

“Essentially, we hope this will eventually give us the ability to become a one-stop shop for quantum sensing materials,” Guo said.

“The defects in the diamond are interesting to us because they can be exploited for quantum application,” said Nazar Delegan, scientist in Argonne's Materials Science division and the Pritzker School of Molecular Engineering at the University of Chicago and a collaborator with Q-NEXT. “Making these membranes allows us to integrate these defects with other systems and enables new experimental configurations.”

Diamond is mechanically hard, chemically stable and generally expensive — in other words, it is kind of a scientific nightmare, notoriously difficult to fabricate and integrate. At the same time, diamond's particular structure makes it a great host for color centers that can store quantum information for a long time, Guo said.

“Conventional diamond as a substrate is super hard to work with,” he said. “Our membranes are thinner and more accessible for a wide range of experiments.”

The new diamond material fashioned by the researchers offers greater crystal and surface quality, enabling greater control over the coherence of the color centers.

“You can peel the membrane off and put it on a wide range of substrates, even put it on a silicon wafer. It’s a cheap, flexible and easy way of working with color centers without having to work directly with conventional diamond,” Guo said.

“Because we’re able to control and maintain the quantum properties in individual defects within these very thin materials, it makes this platform promising as basis for a quantum technologies," Delegan said.

####

About DOE/Argonne National Laboratory
Q-NEXT is a U.S. Department of Energy National Quantum Information Science Research Center led by Argonne National Laboratory. Q-NEXT brings together world-class researchers from national laboratories, universities and U.S. technology companies with the single goal of developing the science and technology to control and distribute quantum information. Q-NEXT collaborators and institutions will create two national foundries for quantum materials and devices, develop networks of sensors and secure communications systems, establish simulation and network testbeds, and train the next-generation quantum-ready workforce to ensure continued U.S. scientific and economic leadership in this rapidly advancing field. For more information, visit https://​www​.​q​-next​.org .

For more information, please click here

Contacts:
Leah Hesla
DOE/Argonne National Laboratory

Copyright © DOE/Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A paper based on the study “Tunable and transferable diamond membranes for integrated quantum technologies” appeared in the December 13, 2021, online edition of Nano Letters. In addition to Delegan and Guo, other authors of the study are Jonathan Karsch, Zixi Li, Tinale Liu, Robert Shreiner, Amy Butcher, David Awschalom, F. Joseph Heremans and Alexander A. High:

Related News Press

Quantum Physics

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Laboratories

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Quantum powers researchers to see the unseen September 8th, 2023

Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Quantum Computing

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Scientists edge toward scalable quantum simulations on a photonic chip: A system using photonics-based synthetic dimensions could be used to help explain complex natural phenomena June 30th, 2023

Sensors

Electron collider on a chip June 30th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Materials/Metamaterials/Magnetoresistance

Ultrafast lasers for materials processing August 11th, 2023

Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Understanding the diverse industrial applications of materials science: Materials Science A Field of Diverse Industrial Applications July 21st, 2023

A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds July 21st, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project