Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films

(top left) An illustration of the HiPIMS process (top right) The energy distribution of tungsten ions arriving at the substrate over time. At short times, there are a large proportion of ions with high energy. (bottom) Stress-free tungsten films created with the selective pulsed bias technique. (a) Plan view transmission electron microscopy (TEM) image of the film; (b) a higher resolution image; (c) reconstructions of the selected area in (b) based on inverse Fourier transforms, with two regions magnified.

CREDIT
Tokyo Metropolitan University
(top left) An illustration of the HiPIMS process (top right) The energy distribution of tungsten ions arriving at the substrate over time. At short times, there are a large proportion of ions with high energy. (bottom) Stress-free tungsten films created with the selective pulsed bias technique. (a) Plan view transmission electron microscopy (TEM) image of the film; (b) a higher resolution image; (c) reconstructions of the selected area in (b) based on inverse Fourier transforms, with two regions magnified. CREDIT Tokyo Metropolitan University

Abstract:
Researchers from Tokyo Metropolitan University have used high power impulse magnetron scattering (HiPIMS) to create thin films of tungsten with unprecedentedly low levels of film stress. By optimizing the timing of a "substrate bias pulse" with microsecond precision, they minimized impurities and defects to form crystalline films with stresses as low as 0.03 GPa, similar to those achieved through annealing. Their work promises efficient pathways for creating metallic films for the electronics industry.

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films

Tokyo, Japan | Posted on July 4th, 2021

Modern electronics relies on the intricate, nanoscale deposition of thin metallic films onto surfaces. This is easier said than done; unless done right, "film stresses" arising from the microscopic internal structure of the film can cause buckling and curving over time. Getting rid of these stresses usually requires heating or "annealing". Unfortunately, many of the best metals for the job e.g. tungsten have high melting points, meaning that the film needs to be heated to over 1000 degrees Celsius. Not only is this energy intensive, but it severely limits which substrate materials can be used. The race is on to create films out of high melting point metals without these stresses in the first place.

A team led by Associate Professor Tetsuhide Shimizu of Tokyo Metropolitan University have been working with a technique known as high power impulse magnetron scattering (HiPIMS), a sputtering technique. Sputtering involves applying a high voltage across a metallic "target" and a substrate, creating a plasma of charged gas atoms which bombards the metallic target and forms a charged metal vapor; these metal ions fly towards the substrate where they form a film. In the case of HiPIMS, the voltage is pulsed in short, powerful bursts. After each pulse, it is known that there is some separation between the arrival of metal and gas ions at the substrate; a synchronized "substrate bias" pulse can help selectively accelerate the metal ions, creating denser films. Yet despite many efforts, the issue of residual stress remained.

Now, using argon gas and a tungsten target, the team looked at how ions with different energies arrived at the substrate over time in unprecedented detail. Instead of using a bias pulse set off at the same time as the HiPIMS pulse, they used their knowledge of when different ions arrived and introduced a tiny delay, 60 microseconds, to precisely select for the arrival of high energy metal ions. They found that this minimized the amount of gas ending up in the film and efficiently delivered high levels of kinetic energy. The result was a dense crystalline film with large grains and low film stress. By making the bias stronger, the films became more and more stress-free. The efficient delivery of energy to the film meant that they had, in fact, achieved a similar effect to annealing while they deposited the film. By further swapping out argon for krypton, the team realized films with a stress as low as 0.03 GPa, comparable to what can be made with post-annealing.

An efficient pathway to stress-free films will have a significant impact on metallization processes and the manufacture of next-generation circuitry. The technology may be applied to other metals and promises big gains for the electronics industry.

###

This work was supported by the Fund for the Promotion of Joint International Research (No.17KK0136) of the Japan Society for the Promotion of Science (JSPS), the Swedish Research Council (No. VR 2018-04139), and the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009-00971).

####

For more information, please click here

Contacts:
Go Totsukawa

81-426-772-728

@TMU_PR

Copyright © Tokyo Metropolitan University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Superconductivity in high-Tc cuprates: ‘from maximal to minimal dissipation’ - a new paradigm? July 30th, 2021

Researchers find 'layer Hall effect' in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect July 30th, 2021

Water as a metal July 30th, 2021

UCF researchers develop new nanomaterial to derive clean fuel from the sea: The material offers the high performance and stability needed for industrial-scale electrolysis, which could produce a clean energy fuel from seawater July 30th, 2021

Thin films

Thin is now in to turn terahertz polarization: Rice lab’s discovery of ‘magic angle’ builds on its ultrathin, highly aligned nanotube films May 20th, 2021

FEFU scientists are paving way for future tiny electronics and gadgets August 28th, 2020

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I) June 19th, 2020

Transparent graphene electrodes might lead to new generation of solar cells: New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens June 8th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Chaotic electrons heed ‘limit’ in strange metals July 30th, 2021

UVA Engineering researchers join quest to demonstrate photonic systems-on-chip: Future applications include faster, more efficient data centers and next-generation millimeter-wave wireless communication July 30th, 2021

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Possible Futures

Non-linear effects in coupled optical microcavities July 30th, 2021

Lifeboat Foundation Guardian Winner Jeff Bezos Donates One Million to Lifeboat Foundation Dream Project Winner Teachers in Space July 30th, 2021

Superconductivity in high-Tc cuprates: ‘from maximal to minimal dissipation’ - a new paradigm? July 30th, 2021

Researchers find 'layer Hall effect' in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect July 30th, 2021

Chip Technology

Non-linear effects in coupled optical microcavities July 30th, 2021

Researchers find 'layer Hall effect' in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect July 30th, 2021

Chaotic electrons heed ‘limit’ in strange metals July 30th, 2021

Scientists release new AI-based tools to accelerate functional electronic materials discovery: The work could allow scientists to accelerate the discovery of materials showing a metal-insulator transition July 30th, 2021

Discoveries

Non-linear effects in coupled optical microcavities July 30th, 2021

Superconductivity in high-Tc cuprates: ‘from maximal to minimal dissipation’ - a new paradigm? July 30th, 2021

Researchers find 'layer Hall effect' in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect July 30th, 2021

Chaotic electrons heed ‘limit’ in strange metals July 30th, 2021

Materials/Metamaterials

Water as a metal July 30th, 2021

UCF researchers develop new nanomaterial to derive clean fuel from the sea: The material offers the high performance and stability needed for industrial-scale electrolysis, which could produce a clean energy fuel from seawater July 30th, 2021

Chaotic electrons heed ‘limit’ in strange metals July 30th, 2021

Scientists release new AI-based tools to accelerate functional electronic materials discovery: The work could allow scientists to accelerate the discovery of materials showing a metal-insulator transition July 30th, 2021

Announcements

Water as a metal July 30th, 2021

UCF researchers develop new nanomaterial to derive clean fuel from the sea: The material offers the high performance and stability needed for industrial-scale electrolysis, which could produce a clean energy fuel from seawater July 30th, 2021

Chaotic electrons heed ‘limit’ in strange metals July 30th, 2021

Scientists release new AI-based tools to accelerate functional electronic materials discovery: The work could allow scientists to accelerate the discovery of materials showing a metal-insulator transition July 30th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Chaotic electrons heed ‘limit’ in strange metals July 30th, 2021

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

Removing the lead hazard from perovskite solar cells July 16th, 2021

Research partnerships

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

New family of atomic-thin electride materials discovered June 11th, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

Hexagonal boron nitride's remarkable toughness unmasked: 2D material resists cracking and description by century-old theory of fracture mechanics June 2nd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project