Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Search for strange Skyrmion phenomenon fails but finds stranger magnetic beaded necklace: Physicists on the hunt for a rarely seen magnetic spin texture have discovered another object that bears its hallmarks, hidden in the structure of ultra-thin magnetic films, that they have c

The measured domain pattern of the 'incommensurate spin crystal' phase.

CREDIT
University of Warwick
The measured domain pattern of the 'incommensurate spin crystal' phase. CREDIT University of Warwick

Abstract:
•University of Warwick physicists set out to find Skyrmions, only to find near-identical object with distinctive qualities that they have named an incommensurate spin crystal
•Scientists looked for the signs of the magnetic spin texture in ultra-thin materials only a few atoms thick
•Physicists have great interest in the potential of Skyrmions frequently detected by their ambiguous, bulk electrical measurements.
•This new discovery could point the way for a new basis for technologies in computer memory and storage

Search for strange Skyrmion phenomenon fails but finds stranger magnetic beaded necklace: Physicists on the hunt for a rarely seen magnetic spin texture have discovered another object that bears its hallmarks, hidden in the structure of ultra-thin magnetic films, that they have c

Coventry, UK | Posted on April 2nd, 2021

Physicists on the hunt for a rarely seen magnetic spin texture have discovered another object that bears its hallmarks, hidden in the structure of ultra-thin magnetic films, that they have called an incommensurate spin crystal.

A team from the University of Warwick reports the findings in the journal Nature Communications, which could offer new possibilities for technologies such as computer memory and storage.

The researchers initially set out to find a Skyrmion, a whirling magnetic spin texture theorised to exist in particular magnetic materials and that are of great interest to physicists due to their unique properties and potential for a new generation of energy efficient data storage. To find them, scientists look for abnormal behaviour of the Hall effect; this causes electrons moving through a conducting material to behave differently, measured as resistivity.

To induce this effect, the team created samples by combining an extremely thin film of a ferroelectric material, lead titanate, with another thin film of a ferromagnet, strontium ruthanate. These layers are atomically flat, a mere five to six unit cells (3 nanometres) thick.

The ferroelectric layer induces an electric field that warps the atomic structure of the ferromagnet, breaking its symmetry. Using atomical precision electron microscopy, they measured this symmetry breaking, and were also able to separately measure the electrical resistivity of the material and confirmed the presence of features akin to the Topological Hall effect, as would be expected for a Skyrmion.

Then the researchers used Magnetic Force Microscopy to examine the topology of the material's atomic structure, which formed a lattice based on rectangles - not hexagons, as they would expect. Within this lattice are magnetic domains where Skyrmions would be found as individual, isolated particles. Instead, these domains formed more like beads on a string or necklace, with beads that never quite form a perfect circle.

Lead author Sam Seddon, a PhD student in the University of Warwick Department of Physics, said: "Once you make careful examination of the images, you realise, actually, this doesn't present like a Skyrmion at all.

"A Skyrmion causes its own complicated Hall effect and when similar-looking effects are observed it is often treated as a signature of the Skyrmion. We've found a very ordered domain structure, just as a Skyrmion lattice would form, however they are simply chiral and not topologically protected. What this shows with real-space imaging evidence is that you don't need a topological domain to cause a Hall effect of this kind."

Ferroelectric and ferromagnetic materials are important for technologies such as computer memory and storage. For example, materials very similar to lead titanate are often used for the computer memory in the electronic systems in cars, due to their robustness and ability to operate at extreme temperatures.

Co-author Professor Marin Alexe from the University of Warwick said: "There is interest in these types of interfaces between ferroelectric and ferromagnet materials, such as for new types of computer memory. Because ferroelectric polarisation can be switched permanently, this modifies a quantum effect in a ferromagnet and that might give us direction for materials for the next quantum computers. These will need stable materials which work at extreme temperatures, are low-power consumption, and can store information for a long time, so all the ingredients are here.

"Topology is the translation of certain mathematical concepts into real life and is now at the core of new discoveries in physics. At the University of Warwick we have an extraordinary and advanced infrastructure which allows us to tackle a problem from theoretical point of view, to looking at atomic structure, right up to looking into functional properties at extreme temperatures and fields, especially magnetic fields. We are able to offer foundations for engineers to develop new technologies from."

This research received funding from the Engineering and Physical Sciences Research Council, part of UK Research and Innovation, and the Royal Society.

####

For more information, please click here

Contacts:
Peter Thorley

44-078-245-40863

@warwicknewsroom

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Magnetism/Magnons

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Rice physicists find 'magnon' origins in 2D magnet: Topological feature could prove useful for encoding information in electron spins September 3rd, 2021

Mixing a cocktail of topology and magnetism for future electronics: Joining topological insulators with magnetic materials for energy-efficient electronics August 6th, 2021

Researchers find 'layer Hall effect' in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect July 30th, 2021

Skyrmions

The ICN2 co-leads a roadmap on quantum materials September 29th, 2020

Discovery may lead to new materials for next-generation data storage: Army-funded research demonstrates emergent chirality in polar skyrmions for the first time in oxide superlattices May 10th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

Taking magnetism for a spin: Exploring the mysteries of skyrmions January 23rd, 2019

Possible Futures

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Chip Technology

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Switching on a superfluid: Exotic phase transitions unlock pathways to future, superfluid-based technologies September 24th, 2021

Discoveries

Fabricating MgB2 superconductors using spark plasma sintering and pulse magnetization: New research suggests that highly dense MgB2 bulks have improved mechanical and superconducting properties September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Announcements

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Fabricating MgB2 superconductors using spark plasma sintering and pulse magnetization: New research suggests that highly dense MgB2 bulks have improved mechanical and superconducting properties September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project