Home > Press > Synthetic biology reinvents development:The research team have used synthetic biology to develop a new type of genetic design that can reproduce some of the key processes that enable creating structures in natural systems, from termite nests to the development of embryos
Petri dish with the bacteria E. coli forming patterns induced by the new synthetic system. Source: Ricard Solé. |
Abstract:
Richard Feynman, one of the most respected physicists of the twentieth century, said "What I cannot create, I do not understand". Not surprisingly, many physicists and mathematicians have observed fundamental biological processes with the aim of precisely identifying the minimum ingredients that could generate them. One such example are the patterns of nature observed by Alan Turing. The brilliant English mathematician demonstrated in 1952 that it was possible to explain how a completely homogeneous tissue could be used to create a complex embryo, and he did so using one of the simplest, most elegant mathematical models ever written. One of the results of such models is that the symmetry shown by a cell or a tissue can "break" under a set of conditions. However, Turing was not able to test his ideas, and it took over 70 years before a breakthrough in biology technique was able to evaluate them decisively. Can Turing's dream be made a reality through Feynman's proposal? Genetic engineering has proved it can.
Evolution of the E. coli colony modified using synthetic biology.
Now, a research team from the Institute of Evolutionary Biology (IBE), a joint centre of UPF and the Spanish National Research Council (CSIC), has developed a new type of model and its implementation using synthetic biology can reproduce the symmetry breakage observed in embryos with the minimum amount of ingredients possible.
The research team has managed to implement via synthetic biology (by introducing parts of genes of other species into the E. coli bacteria) a mechanism to generate spatial patterns observed in more complex animals, such as Drosophila melanogaster (fruit fly) or humans. In the study, the team observed that the strains of modified E. coli, which normally grow in (symmetrical) circular patterns, do as in the shape of a flower with petals at regular intervals, just as Turing had predicted.
"We wanted to build symmetry breaking that is never seen in colonies of E. coli, but is seen in patterns of animals, and then to discover which are the essential ingredients needed to generate these patterns", says Salva Duran-Nebreda, who conducted this research for his doctorate in the Complex Systems laboratory and is currently a postdoctoral researcher at the IBE Evolution of Technology laboratory.
Using the new synthetic platform, the research team was able to identify the parameters that modulate the emergence of spatial patterns in E. coli . "We have seen that by modulating three ingredients we can induce symmetry breaking. In essence, we have altered cell division, adhesion between cells and long-distance communication capacity (quorum sensing), that is to say, perceive when there is a collective decision", Duran-Nebreda comments.
The observations made in the E. coli model could be applied to more complex animal models or to insect colony design principles. "In the same way that organoids or miniature organs can help us develop therapies without having to resort to animal models, this synthetic system paves the way to understanding as universal a phenomenon as embryonic development in a far simpler in vitro system", says Ricard Solé, ICREA researcher with the Complex Systems group at the IBE, and head of the research.
The model developed in this study, the first of its kind, could be key to understanding some embryonic development events. "We must think of this synthetic system as a platform for learning to design different fundamental biological mechanisms that generate structures, such as the step from a zygote to the formation of a complete organism. Moreover, such knowledge on the frontier between mechanical and biological processes, could be very useful for understanding developmental disorders", Duran-Nebreda concludes.
####
For more information, please click here
Contacts:
Mari Carmen Cebrián Calvo
34-933-160-916
Copyright © Universitat Pompeu Fabra Barcelona
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Synthetic Biology
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||