Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes.

A color map illustrates the inherent colors of 466 types of carbon nanotubes with unique (n,m) designations based on their chiral angle and diameter. (Image courtesy of Kauppinen Group/Aalto University)
A color map illustrates the inherent colors of 466 types of carbon nanotubes with unique (n,m) designations based on their chiral angle and diameter. (Image courtesy of Kauppinen Group/Aalto University)

Abstract:
Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes.

Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes.

Houston, TX | Posted on December 14th, 2020

The nanotube color atlas is detailed in a study in Advanced Materials about a new method to predict the specific colors of thin films made by combining any of the 466 varieties. The research was conducted by researchers from Aalto University in Finland, Rice University and Peking University in China.

"Carbon, which we see as black, can appear transparent or take on any color of the rainbow," said Aalto physicist Esko Kauppinen, the corresponding author of the study. "The sheet appears black if light is completely absorbed by carbon nanotubes in the sheet. If less than about half of the light is absorbed in the nanotubes, the sheet looks transparent. When the atomic structure of the nanotubes causes only certain colors of light, or wavelengths, to be absorbed, the wavelengths that are not absorbed are reflected as visible colors."

Carbon nanotubes are long, hollow carbon molecules, similar in shape to a garden hose but with sides just one atom thick and diameters about 50,000 times smaller than a human hair. The outer walls of nanotubes are made of rolled graphene. And the wrapping angle of the graphene can vary, much like the angle of a roll of holiday gift wrap paper. If the gift wrap is rolled carefully, at zero angle, the ends of the paper will align with each side of the gift wrap tube. If the paper is wound carelessly, at an angle, the paper will overhang on one end of the tube.

The atomic structure and electronic behavior of each carbon nanotube is dictated by its wrapping angle, or chirality, and its diameter. The two traits are represented in a "(n,m)" numbering system that catalogs 466 varieties of nanotubes, each with a characteristic combination of chirality and diameter. Each (n,m) type of nanotube has a characteristic color.

Kauppinen's research group has studied carbon nanotubes and nanotube thin films for years, and it previously succeeded in mastering the fabrication of colored nanotube thin films that appeared green, brown and silver-grey.

In the new study, Kauppinen's team examined the relationship between the spectrum of absorbed light and the visual color of various thicknesses of dry nanotube films and developed a quantitative model that can unambiguously identify the coloration mechanism for nanotube films and predict the specific colors of films that combine tubes with different inherent colors and (n,m) designations.

Rice engineer and physicist Junichiro Kono, whose lab solved the mystery of colorful armchair nanotubes in 2012, provided films made solely of (6,5) nanotubes that were used to calibrate and verify the Aalto model. Researchers from Aalto and Peking universities used the model to calculate the absorption of the Rice film and its visual color. Experiments showed that the measured color of the film corresponded quite closely to the color forecast by the model.

The Aalto model shows that the thickness of a nanotube film, as well as the color of nanotubes it contains, affects the film's absorption of light. Aalto's atlas of 466 colors of nanotube films comes from combining different tubes. The research showed that the thinnest and most colorful tubes affect visible light more than those with larger diameters and faded colors.

"Esko's group did an excellent job in theoretically explaining the colors, quantitatively, which really differentiates this work from previous studies on nanotube fluorescence and coloration," Kono said.

Since 2013, Kono's lab has pioneered a method for making highly ordered 2D nanotube films. Kono said he had hoped to supply Kauppinen's team with highly ordered 2D crystalline films of nanotubes of a single chirality.

"That was the original idea, but unfortunately, we did not have appropriate single-chirality aligned films at that time," Kono said. "In the future, our collaboration plans to extend this work to study polarization-dependent colors in highly ordered 2D crystalline films."

The experimental method the Aalto researchers used to grow nanotubes for their films was the same as in their previous studies: Nanotubes grow from carbon monoxide gas and iron catalysts in a reactor that is heated to more than 850 degrees Celsius. The growth of nanotubes with different colors and (n,m) designations is regulated with the help of carbon dioxide that is added to the reactor.

"Since the previous study, we have pondered how we might explain the emergence of the colors of the nanotubes," said Nan Wei, an assistant research professor at Peking University who previously worked as a postdoctoral researcher at Aalto. "Of the allotropes of carbon, graphite and charcoal are black, and pure diamonds are colorless to the human eye. However, now we noticed that single-walled carbon nanotubes can take on any color: for example, red, blue, green or brown."

Kauppinen said colored thin films of nanotubes are pliable and ductile and could be useful in colored electronics structures and in solar cells.

"The color of a screen could be modified with the help of a tactile sensor in mobile phones, other touch screens or on top of window glass, for example," he said.

Kauppinen said the research can also provide a foundation for new kinds of environmentally friendly dyes.

Kono is a professor of electrical and computer engineering, physics and astronomy, and materials science and nanoengineering and the director of Rice's Applied Physics Graduate Program.

Additional study co-authors include Natsumi Komatsu and Alina Lyuleeva, both of Rice; Weilu Gao, formerly of Rice and now an assistant professor of electrical and computer engineering at the University of Utah; Yongping Liao, Qiang Zhang, Aqeel Hussain, Er-Xiong Ding, Janne Halme and Hua Jiang, all of Aalto; Fengrui Yao and Kaihui Liu, both of Peking University; and Ying Tian of Dalian Maritime University in China.

The research was funded by the European Union (FP7-604472), Aalto University's Energy Efficiency Research Program, the Academy of Finland (3165720-CNTstress), the Finnish Funding Agency for Technology and Innovation (3303/31/2015-CNT-PV, 1882/31/2016-FEDOC) and the Alberta Technical University of Munich International Graduate School for Hybrid Functional Materials.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nationís top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Riceís undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplingerís Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The DOI of the Advanced Materials paper is: 10.1002/adma.202006395

Related News Press

News and information

Graphene key for novel hardware security May 10th, 2021

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Simple robots, smart algorithms April 30th, 2021

A silver lining for extreme electronics April 30th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

Possible Futures

Graphene key for novel hardware security May 10th, 2021

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Chip Technology

A silver lining for extreme electronics April 30th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

Nanotubes/Buckyballs/Fullerenes/Nanorods

Optically active defects improve carbon nanotubes: Heidelberg scientists achieve defect control with a new reaction pathway April 9th, 2021

Graphene nanotubes gain traction in automotive market: OCSiAl confirms compliance with IATF 16949 March 9th, 2021

Chemists get peek at novel fluorescence: Rice University scientists discover delayed phenomenon in carbon nanotubes December 3rd, 2020

Synthesis of organophilic carbon nanodots with multi-band emission from tomato leaves August 21st, 2020

Sensors

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

Wearable sensors that detect gas leaks April 19th, 2021

Discoveries

Graphene key for novel hardware security May 10th, 2021

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Announcements

Graphene key for novel hardware security May 10th, 2021

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Graphene key for novel hardware security May 10th, 2021

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Energy

A silver lining for extreme electronics April 30th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Wearable sensors that detect gas leaks April 19th, 2021

Better solutions for making hydrogen may lie just at the surface April 9th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ionsí staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Controlling bubble formation on electrodes: Study finds the wettability of porous electrode surfaces is key to making efficient water-splitting or carbon-capturing systems March 26th, 2021

Building tough 3D nanomaterials with DNA: Columbia Engineers use DNA nanotechnology to create highly resilient synthetic nanoparticle-based materials that can be processed through conventional nanofabrication methods March 19th, 2021

Research partnerships

Graphene key for novel hardware security May 10th, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ionsí staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Solar/Photovoltaic

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

2D materials for conducting hole currents from grain boundaries in perovskite solar cells April 2nd, 2021

A PTV-based polymer enabled organic solar cells with over 16% efficiency April 2nd, 2021

A general approach to high-efficiency perovskite solar cells April 1st, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project