Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A powder method for the high-efficacy measurement of electro-optic coefficients

Schematic illustration of the powder method using powder SHG measurement, IRRS, and Raman spectrum

CREDIT
©Science China Press
Schematic illustration of the powder method using powder SHG measurement, IRRS, and Raman spectrum CREDIT ©Science China Press

Abstract:
Electro-optic crystal shows great promise for extensive applications in laser, optoelectronics, and optical communication, such as high-speed E-O switch, modulator, deflector, laser mode-locking, photoetching, laser radar (LIDAR) and so on. With the prosperous development of Terahertz (THz) spectroscopy technique, E-O crystals are employed in this realm for generation and detection of the THz electromagnetic radiation. Although there are some commercial E-O crystals available in the market, further exploration of novel E-O crystals with superior properties is also in great demand for a variety of current applications. However, the discovering of novel electro-optic crystals is sporadic due to lack of theoretical method for the evaluation of E-O effect and the difficulties of large-sized crystal growth for electro-optic coefficient measurement. Hence, the strategy for exploration of novel E-O crystals should be improved.

A powder method for the high-efficacy measurement of electro-optic coefficients

Beijing, China | Posted on August 21st, 2020

Herein, to address such an issue, inspired by the well-known powder second harmonic generation (SHG) technique reported by Kurtz and Perry (J. Appl. Phys. 39, 3798 (1968). Times Cited: 4176) who open a highway for the exploration new NLO crystals, a high-efficacy evaluation method using accessible powder samples is proposed, in which second harmonic generation effect, infrared reflectance spectrum, and Raman spectrum are introduced to predict the magnitude of electro-optic coefficient. Particularly, the evaluation method is established on the material in powder form or small crystals in micron size, which can be easily obtained at the onset of experiment. Comparing to traditional method for the measurement of E-O coefficients with large-sized crystal which is difficult and time-consuming, the utilization of powders renders the exploring process to be more efficient.

The calculated electro-optic coefficients of numerous reported electro-optic crystals through this approach give universally agreement with the experimental values, evidencing the validity of strategy. Based on this method, CsLiMoO¬4 is screened as a novel electro-optic crystal and high-quality crystal is grown by the Czochralski technique for electro-optic coefficient measurement with half-wave voltage method, whose result is also comparable to the calculated value. Also, on account of the preferable calculated E-O coefficient and the relationship between E-O effect and macroscopic symmetry of crystal, CLM was selected as a potential E-O crystal. Consequently, this powder method for the evaluation of E-O crystals is not only significant for the further understanding of the E-O coefficient, but also have important implications for the high-efficacy screening of promising E-O crystals. The powder evaluation strategy presented in this work will pave a new avenue to explore promising electro-optic crystals efficiently.

####

About Science China Press
The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

For more information, please click here

Contacts:
Ning Ye

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Chip Technology

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Optical computing/Photonic computing

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project