Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Photochromic bismuth complexes show great promise for optical memory elements

Working routine in Center for Energy Science and Technology.

CREDIT
Timur Sabirov / Skoltech
Working routine in Center for Energy Science and Technology. CREDIT Timur Sabirov / Skoltech

Abstract:
Russian chemists obtained a new photochromic complex composed of of bismuth (III) and viologen cations and used the new compound to create optical memory elements which were shown to be highly efficient and stable. The outcomes of the study may serve to expand the range of microelectronics components in the future. The research was published in the journal Chemical Communications.

Photochromic bismuth complexes show great promise for optical memory elements

Moscow, Russia | Posted on July 24th, 2020

Modern memory devices, such as memory cards and SSD drives, are based on electrical switches known as transistors, which can form two quasi-stable electrical states due to the presence of additional components capable of accumulating and storing electrical charge. The value of this charge enables or disables electric current through transistor at certain read voltage. In memory elements, the high current or "open" and low current or "closed" states correspond to logic 1 and logic 0, respectively, or vice versa. To write or erase one bit of information, the transistor should switch from one state to the other. In the case of photochromic materials, i.e. materials that change color when exposed to light, the switching requires a pulse of light and, quite often, superposition of the electric field, too.

Viologen cations consist of two linked aromatic pyridine rings (C10H8N2R2)2+ with two substituents (R) at the nitrogen atoms. Some halide metal and viologen complexes, i.e. those that contain elements of the seventh group of the Periodic Table (F, Cl, Br, and I), can change color when exposed to light. These compounds have not yet found application in electronics despite their highly appealing optoelectronic characteristics. For the first time ever, a group of scientists from the Skolkovo Institute of Science and Technology (Moscow), the Institute of Problems of Chemical Physics of RAS (Chernogolovka) and the Nikolaev Institute of Inorganic Chemistry of SB RAS (Novosibirsk) led by Skoltech professor Pavel Troshin succeeded in designing a photosensitive bismuth complex with optimal properties and demonstrated that it can be successfully used as advanced optically triggered material for memory devices.

"Earlier, we showed the prospects of using organic photochromic materials in photoswitchable field-effect transistors and optical memory elements. Recently, we looked into a series of dihetarylethene derivatives and established very important correlations between their structure and properties. In the current study, we have made a step forward along this avenue of research by using metal compounds in optical switches and memory elements," explains Lyubov Frolova, a senior research scientist at Skoltech.

The researchers assembled organic field-effect transistors with an additional photosensitive layer made of the bismuth complex with viologen cations. As an intermediate device frabrication step, the complex was crystallized as a film from a solution on a dielectric aluminum oxide layer. The scientists found that the device can be "programmed" by simultaneously applied light pulse and electric bias between the device electrodes, which results in the device switching between two or more quasi-stable electrical states. Having multiple states in the transistor opens up great prospects for creating multi-bit memory elements for high-density data recording.

The current running through the transistor channel can be modulated by 100 times in half a second and by 10,000 times in several tens of seconds of "programming". This figure points to high efficiency of the devices, which matches the characteristics of the best organic photosensitive field-effect transistors known to date. The authors assume that their devices will have long-term data storage capacity and will be able to withstand many write-read-erase cycles. The recent research has demonstrated their stable operation in over 200 cycles.

####

For more information, please click here

Contacts:
Ilyana Zolotareva

897-777-14699

Copyright © Skolkovo Institute of Science and Technology (Skoltech)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

How photoblueing disturbs microscopy February 26th, 2021

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Nanoparticles help untangle Alzheimer's disease amyloid beta plaques: New research shows that the protein that causes Alzheimer's disease's hallmark brain plaques clings to certain bowl-shaped nanoparticles, allowing researchers to better understand the disease and potentially pr February 26th, 2021

Possible Futures

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Nanoparticles help untangle Alzheimer's disease amyloid beta plaques: New research shows that the protein that causes Alzheimer's disease's hallmark brain plaques clings to certain bowl-shaped nanoparticles, allowing researchers to better understand the disease and potentially pr February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cellsí output February 26th, 2021

Memory Technology

Discovery suggests new promise for nonsilicon computer transistors: Once deemed suitable only for high-speed communication systems, an alloy called InGaAs might one day rival silicon in high-performance computing December 9th, 2020

New insights into memristive devices by combining incipient ferroelectrics and graphene November 27th, 2020

Multi-state data storage leaving binary behind: Stepping 'beyond binary' to store data in more than just 0s and 1s October 16th, 2020

Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties: New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties July 24th, 2020

Optical computing/Photonic computing

New study investigates photonics for artificial intelligence and neuromorphic computing February 1st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Discoveries

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

How photoblueing disturbs microscopy February 26th, 2021

Changing the silkworm's diet to spin stronger silk February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cellsí output February 26th, 2021

Materials/Metamaterials

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Islands without structure inside metal alloys could lead to tougher materials: These high-entropy alloys could lead to better technologies in transportation, energy and denfense January 29th, 2021

A little soap simplifies making 2D nanoflakes: Rice labís experiments refine processing of hexagonal boron nitride January 27th, 2021

Announcements

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Nanoparticles help untangle Alzheimer's disease amyloid beta plaques: New research shows that the protein that causes Alzheimer's disease's hallmark brain plaques clings to certain bowl-shaped nanoparticles, allowing researchers to better understand the disease and potentially pr February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cellsí output February 26th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Nanoparticles help untangle Alzheimer's disease amyloid beta plaques: New research shows that the protein that causes Alzheimer's disease's hallmark brain plaques clings to certain bowl-shaped nanoparticles, allowing researchers to better understand the disease and potentially pr February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cellsí output February 26th, 2021

Photonics/Optics/Lasers

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Electrons living on the edge: Researchers at the University of Tsukuba use theoretical calculations to predict the possibility of 'massless' electrons in topological insulators excited with lasers, which may lead to faster and more efficient electronic devices February 19th, 2021

New study investigates photonics for artificial intelligence and neuromorphic computing February 1st, 2021

Pioneering new technique could revolutionise super-resolution imaging systems January 22nd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project