Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I)

Schematic crystal structures and electronic localization functions (ELFs) of 2D, 1D, and soft 1D Bi2Se3, Sb2Se3 and BiSeI, respectively. Schematic diagrams and corresponding crystal structures of (a, d) 2D slabs in Bi2Se3, (b, e) 1D chain in Sb2Se3 and (c, f) 1D chain with migration of halogens in BiSeI. The crystal structures of Bi2Se3, Sb2Se3and BiSeI viewed along the c direction are given in (g-i), respectively. (j-l) The projected ELF along the chain. The isosurface level of ELF is 0.9.

CREDIT
©Science China Press
Schematic crystal structures and electronic localization functions (ELFs) of 2D, 1D, and soft 1D Bi2Se3, Sb2Se3 and BiSeI, respectively. Schematic diagrams and corresponding crystal structures of (a, d) 2D slabs in Bi2Se3, (b, e) 1D chain in Sb2Se3 and (c, f) 1D chain with migration of halogens in BiSeI. The crystal structures of Bi2Se3, Sb2Se3and BiSeI viewed along the c direction are given in (g-i), respectively. (j-l) The projected ELF along the chain. The isosurface level of ELF is 0.9. CREDIT ©Science China Press

Abstract:
The low thermal transport properties are important for applications in thermoelectrics and thermal barrier coatings. Nowadays, the strategies to acquire low thermal conductivity in bulk materials include multi-scale defect (atomic, nano- and meso-scale), heavy molecular weight, complex crystal structure, larger unit cell and strong anharmonicity.

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I)

Beijing, China | Posted on June 19th, 2020

In a recent article in Science China Materials, Prof. Li-Dong Zhao from Beihang University and co-workers proposed a new strategy to search intrinsically low thermal conductivity in one-dimensional crystal structure. By using the first-principles calculations and experimental synthesis, they found a sort of material with extremely low thermal conductivity, namely BiSeX (X= Br, I) with one-dimensional chain structure. The mechanisms behind the low thermal conductivity were revealed from the aspect of crystal structure, by neutron powder-diffraction measurements and temperature tunable aberration-corrected scanning transmission electron microscopy (STEM).

To elucidate the origins of ultralow thermal conductivity, the authors make comparisons with several analogues that exhibit cubic- (3D), layer- (2D) and chain-like (1D) crystal structures and find that the thermal conductivity shows a decreasing trend from 3D, 2D to 1D (Fig. 1), which is due to the chemical bonding strength between the low-dimensional structure becoming progressively weaker and weaker.

"Based on these guidelines, we found that the chemical bonding along the chain further weakened with added halogen atom", said Prof. Zhao. Therefore, the chemical bondings of BiSeX along all three crystallographic directions are weaker than in other compounds (Fig. 2), showing a quasi-0D crystal structure.

Different from the ultrahigh thermal conductivity diamond (> 2000 W m-1 K-1) with strong covalent bond between carbon atoms, the phonon transport in bismuth selenohalides was significantly suppressed. As a result, they exhibit extremely low thermal conductivity. "The thermal conductivity of BiSeI at 573 K reaches ~0.27 W m-1 K-1, which is close to the theoretical minimum value", emphasized by Prof. Zhao.

These findings open up a prospect of achieving low thermal conductivity materials in one-dimensional chain-containing bulk structure with potential applications in the fields of thermal barrier coatings, thermoelectric materials, etc.

###

This work was published online in Science China Materials and highlighted by Science (Science, 368 (2020) 1325.) (Fig. 3).

This work was supported by the National Key Research and Development Program of China (2018YFA0702100, 2018YFB0703600), the National Natural Science Foundation of China (51772012, 51632005), the National Science Foundation for Distinguished Young Scholars (51925101), Shenzhen Peacock Plan team (KQTD2016022619565991), Beijing Natural Science Foundation (JQ18004), China Postdoctoral Science Foundation Grant (2019M650429) and 111 Project (B17002).

####

For more information, please click here

Contacts:
Li-Dong Zhao

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: D. Wang, et al. "Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure". Science China Materials (2020):

Related News Press

Thin films

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Tools

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project