Home > Press > Magnet research takes giant leap
![]() |
UCF Professor Enrique del Barco is leading the team lexploring methods for creating machines that operate at trillions of cycles per second. CREDIT UCF |
Abstract:
Researchers pushing the limits of magnets as a means to create faster electronics published their proof of concept findings today, April 10, in the journal Science.
The University of Central Florida is the lead university in the multidisciplinary university research initiative (MURI) project, which is funded by a $7.5 million grant from the Department of Defense. The team exploring methods for creating machines that operate at trillions of cycles per second includes the University of California, Santa Cruz and Riverside, Ohio State University, Oakland University (Michigan) and New York University, among others.
Today's computers rely on ferromagnets (the same kind that stick to your refrigerator) to align the binary 1s and 0s that process and store information. Anti-ferromagnets are much more powerful, but their natural state, displaying no net measurable magnetization, makes it difficult to harness their power.
The laboratory of Enrique del Barco, Ph.D., and collaborators at the University of California, the National High Magnetic Field Laboratory, the Norwegian University of Science and Technology and the Chinese Northeastern University are successfully overcoming that natural resistance using electrical currents passed through anti-ferromagnets on the nanoscale. The results are groundbreaking because they represent proof of concept showing that antiferromagnetic devices can operate on the terahertz level -- or calculations completed in a trillionth of a second. Not only does that hold potential for everything from guidance systems to communications, but it brings devices closer to mimicking the way the brain operates.
"What we're seeing now is that operating at this level is possible and doable," del Barco said.
The next steps will require close collaboration between the theory, experiment and materials groups within the MURI. Creating devices on the nanoscale (with lateral dimensions below half a micron) takes a fundamental understanding of the appropriate materials. Both theoretical and experimental study will follow this proof of concept with the intention of finding creative ways to scale down anti-ferromagnets.
###
Del Barco received his PhD from the University of Barcelona (Spain) in 2001. He was a postdoctoral associate in the physics department at New York University before joining UCF in 2005.
####
For more information, please click here
Contacts:
Zenaida Gonzalez Kotala
407-446-6567
@UCF
Copyright © University of Central Florida
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Magnetism/Magnons
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |