Home > Press > Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers
![]() |
Abstract:
•Nanolaser is smaller, more stable and driven at much lower powers than existing small lasers
•Made from intrinsically biocompatible glass, it can absorb shorter and longer wavelengths of light
•Researchers developed laser by upconverting low-energy photons to visible light
Researchers have developed a tiny nanolaser that can function inside of living tissues without harming them.
Just 50 to 150 nanometers thick, the laser is about 1/1,000th the thickness of a single human hair. At this size, the laser can fit and function inside living tissues, with the potential to sense disease biomarkers or perhaps treat deep-brain neurological disorders, such as epilepsy.
Developed by researchers at Northwestern and Columbia Universities, the nanolaser shows specific promise for imaging in living tissues. Not only is it made mostly of glass, which is intrinsically biocompatible, the laser can also be excited with longer wavelengths of light and emit at shorter wavelengths.
“Longer wavelengths of light are needed for bioimaging because they can penetrate farther into tissues than visible wavelength photons,” said Northwestern’s Teri Odom, who co-led the research. “But shorter wavelengths of light are often desirable at those same deep areas. We have designed an optically clean system that can effectively deliver visible laser light at penetration depths accessible to longer wavelengths.”
The nanolaser also can operate in extremely confined spaces, including quantum circuits and microprocessors for ultra-fast and low-power electronics.
The paper was published today (Sept. 23) in the journal Nature Materials. Odom co-led the work with P. James Schuck at Columbia University’s School of Engineering.
While many applications require increasingly small lasers, researchers continually run into the same roadblock: Nanolasers tend to be much less efficient than their macroscopic counterparts. And these lasers typically need shorter wavelengths, such as ultraviolet light, to power them.
“This is bad because the unconventional environments in which people want to use small lasers are highly susceptible to damage from UV light and the excess heat generated by inefficient operation,” said Schuck, an associate professor of mechanical engineering.
Odom, Schuck and their teams were able to achieve a nanolaser platform that solves these issues by using photon upconversion. In upconversion, low-energy photons are absorbed and converted into one photon with higher energy. In this project, the team started with low-energy, “bio-friendly” infrared photons and upconverted them to visible laser beams. The resulting laser can function under low powers and is vertically much smaller than the wavelength of light.
“Our nanolaser is transparent but can generate visible photons when optically pumped with light our eyes cannot see,” said Odom, the Charles E. and Emma H. Morrison Professor of Chemistry in Northwestern’s Weinberg College of Arts and Sciences. “The continuous wave, low-power characteristics will open numerous new applications, especially in biological imaging.”
“Excitingly, our tiny lasers operate at powers that are orders of magnitude smaller than observed in any existing lasers,” Schuck said.
The study, “Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons,” was supported by the National Science Foundation (award number DMR-1608258), the Vannevar Bush Faculty Fellowship from the U.S. Department of Defense (award number N00014-17-1-3023) and the U.S. Department of Energy (DE-AC02-05CH11231). Angel Fernandez-Bravo and Danqing Wang are the paper’s co-first authors.
Odom is a member of Northwestern’s International Institute of Nanotechnology, Chemistry of Life Processes Institute and the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.
####
For more information, please click here
Contacts:
Amanda Morris at 847-467-6790 or
Copyright © Northwestern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Imaging
News and information
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Possible Futures
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Chip Technology
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
The present and future of computing get a boost from new research July 21st, 2023
Nanomedicine
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
New compound unleashes the immune system on metastases September 8th, 2023
Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023
Quantum Computing
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Optical computing/Photonic computing
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023
Discoveries
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Announcements
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
New compound unleashes the immune system on metastases September 8th, 2023
Photonics/Optics/Lasers
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
Ultrafast lasers for materials processing August 11th, 2023
Quantum nanoscience
A quantum leap in mechanical oscillator technology August 11th, 2023
Electron collider on a chip June 30th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |