Home > Press > Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source
![]() |
An electron microscope image shows an array of thermal light emitters created by Rice University engineers. The emitters are able to deliver highly configurable thermal light. (Credit: The Naik Lab/Rice University) CREDIT The Naik Lab/Rice University |
Abstract:
What may be viewed as the world's smallest incandescent lightbulb is shining in a Rice University engineering laboratory with the promise of advances in sensing, photonics and perhaps computing platforms beyond the limitations of silicon.
Gururaj Naik of Rice's Brown School of Engineering and graduate student Chloe Doiron have assembled unconventional "selective thermal emitters" -- collections of near-nanoscale materials that absorb heat and emit light.
Their research, reported in Advanced Materials, one-ups a recent technique developed by the lab that uses carbon nanotubes to channel heat from mid-infrared radiation to improve the efficiency of solar energy systems.
The new strategy combines several known phenomena into a unique configuration that also turns heat into light -- but in this case, the system is highly configurable.
Basically, Naik said, the researchers made an incandescent light source by breaking down a one-element system -- the glowing filament in a bulb -- into two or more subunits. Mixing and matching the subunits could give the system a variety of capabilities.
"The previous paper was all about making solar cells more efficient," said Naik, an assistant professor of electrical and computer engineering. "This time, the breakthrough is more in the science than the application. Basically, our goal was to build a nanoscale thermal light source with specific properties, like emitting at a certain wavelength, or emitting extremely bright or new thermal light states.
"Previously, people thought of a light source as just one element and tried to get the best out of it," he said. "But we break the source into many tiny elements. We put sub-elements together in such a fashion that they interact with each other. One element may give brightness; the next element could be tuned to provide wavelength specificity. We share the burden among many small parts.
"The idea is to rely upon collective behavior, not just a single element," Naik said. "Breaking the filament into many pieces gives us more degrees of freedom to design the functionality."
The system relies on non-Hermitian physics, a quantum mechanical way to describe "open" systems that dissipate energy -- in this case, heat -- rather than retain it. In their experiments, Naik and Doiron combined two kinds of near-nanoscale passive oscillators that are electromagnetically coupled when heated to about 700 degrees Celsius. When the metallic oscillator emitted thermal light, it triggered the coupled silicon disk to store the light and release in the desired manner, Naik said.
The light-emitting resonator's output, Doiron said, can be controlled by damping the lossy resonator or by controlling the level of coupling through a third element between the resonators. "Brightness and the selectivity trade off," she said. "Semiconductors give you a high selectivity but low brightness, while metals give you very bright emission but low selectivity. Just by coupling these elements, we can get the best of both worlds."
"The potential scientific impact is that we can do this not just with two elements, but many more," Naik said. "The physics would not change."
He noted that though commercial incandescent bulbs have given way to LEDs for their energy efficiency, incandescent lamps are still the only practical means to produce infrared light. "Infrared detection and sensing both rely on these sources," Naik said. "What we've created is a new way to build light sources that are bright, directional and emit light in specific states and wavelengths, including infrared."
The opportunities for sensing lie at the system's "exceptional point," he said.
"There's an optical phase transition because of how we've coupled these two resonators," Naik said. "Where this happens is called the exceptional point, because it's exceptionally sensitive to any perturbation around it. That makes these devices suitable for sensors. There are sensors with microscale optics, but nothing has been shown in devices that employ nanophotonics."
The opportunities may also be great for next-level classical computing. "The International Roadmap for Semiconductor Technology (ITRS) understands that semiconductor technology is reaching saturation and they're thinking about what next-generation switches will replace silicon transistors," Naik said. "ITRS has predicted that will be an optical switch, and that it will use the concept of parity-time symmetry, as we do here, because the switch has to be unidirectional. It sends light in the direction we want, and none comes back, like a diode for light instead of electricity."
###
The National Science Foundation supported the research.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.
Follow Rice News and Media Relations via Twitter @RiceUNews.
For more information, please click here
Contacts:
Jade Boyd
713-348-6778
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Rice device channels heat into light:
Department of Electrical and Computer Engineering:
George R. Brown School of Engineering:
Related News Press |
News and information
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Govt.-Legislation/Regulation/Funding/Policy
Quantum powers researchers to see the unseen September 8th, 2023
Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023
Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023
Possible Futures
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Chip Technology
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
The present and future of computing get a boost from new research July 21st, 2023
Nanotubes/Buckyballs/Fullerenes/Nanorods
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
Optical computing/Photonic computing
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023
Sensors
Electron collider on a chip June 30th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023
Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023
Nanoelectronics
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022
Discoveries
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Announcements
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
New compound unleashes the immune system on metastases September 8th, 2023
Energy
A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds July 21st, 2023
Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023
When all details matter -- Heat transport in energy materials June 9th, 2023
Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023
Photonics/Optics/Lasers
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
Ultrafast lasers for materials processing August 11th, 2023
Solar/Photovoltaic
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Stability of perovskite solar cells reaches next milestone January 27th, 2023
New method addresses problem with perovskite solar cells: NREL researchers provide growth approach that boosts efficiency, stability December 29th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |