Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Can break junction techniques still offer quantitative information at single-molecule level

This is a schematic representation of a typical conductance-distance trace in the opening process of the two electrodes. The total conductance (G, red solid line) of a single-molecule junction is composed of the through-space tunneling (Gs, transparent black line) and through-molecule tunneling (Gm, transparent red line) contributions. After breaking down of the junction, a gold-molecule-solution-gold channel (Gc, transparent green line) appears. The three gray areas show regions in which the conductance cannot be measured.

CREDIT
©Science China Press
This is a schematic representation of a typical conductance-distance trace in the opening process of the two electrodes. The total conductance (G, red solid line) of a single-molecule junction is composed of the through-space tunneling (Gs, transparent black line) and through-molecule tunneling (Gm, transparent red line) contributions. After breaking down of the junction, a gold-molecule-solution-gold channel (Gc, transparent green line) appears. The three gray areas show regions in which the conductance cannot be measured. CREDIT ©Science China Press

Abstract:
Single-molecule break junction techniques offer unique insights into the charge transport at the molecular level. The conductance through single-molecule junction consists of the through-space tunneling and the through-molecule tunneling conductance. However, the existence of through-space tunneling, which is ubiquitous at the single-molecule level, makes the quantitative extraction of the intrinsic molecular signals challenging.

Can break junction techniques still offer quantitative information at single-molecule level

Beijing, China | Posted on June 18th, 2019

Although its powerful capability to contact individual molecules, single-molecule break junction techniques are intrinsically not capable of intervening the actual signatures of the junction, such as binding geometries, number of molecules in the junction, interaction between the junction and neighbor molecules, etc.

The widely accepted method to extract the conductance information of a single molecule is to obtain statistics in thousands of break junction processes. Typically, a conductance histogram is plotted to find the most probable conductance. However, to which extent should we trust the obtained conductance? Since the result may affected by many stochastic events, such as junction formation probability, early rupture of the molecular junction, etc., in the break junction process.

What's more, as the focus of the state-of-art single-molecule break junction measurements has gradually shifted from strong interaction to weak interaction systems (such as supramolecular junctions) and from static processes to more dynamic processes (such as diffusion and chemical reaction processes), can break junction techniques still offer quantitative information at single-molecule level in these systems?

Very recently, Professor Wenjing Hong's group in Xiamen University, working together with Prof. Jielou Liao's group in University of Science and Technology of China, explored in detail the quantitative characterization capability of break junction techniques in single-molecule systems through an analytical model (Figure 1). This model describes the conductance changes during the opening process of two gold electrodes and validates the capability of conductance and displacement analyses during the break junction experiments of OAE-type molecule junctions. Based on this model, they demonstrated that the break junction technique can be used to detect the conductance of the molecular system with weak interactions under low junction formation probabilities and early rupture of the formed junction before it reaches a fully-stretched configuration. Using the established simulation approach, they further proved that the break junction technique can offer a quantitative understanding of molecular assembly, diffusion and even reaction processes with complementary conductance and displacement analyses.

###

This work was supported by the National Key R&D Project of China (2017YFA0204902), the National Natural Science Foundation of China (21722305, 21673195, 21703188, 21790360), the Youth Innovation Promotion Association CAS (No. 2015024).

####

For more information, please click here

Contacts:
Hong Wenjing

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: Pan Zhi-chao, Li Jin, Chen Lijue, Tang Yongxiang, Shi Jia, Liu Junyang, Liao Jie-lou, Hong Wenjing. Analytical modeling of the junction evolution in single-molecule break junctions: towards quantitative characterization of the time-dependent process. Sci. China Chem., 2019, DOI:10.1007/s11426-019-9493-6:

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project