Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Russian scientists investigate new materials for Li-ion batteries of miniature sensors: Researchers are developing new materials for solid-state thin-film Li-ion batteries for micro and nanodevices

Researchers develop new materials for solid-state thin-film Li-ion batteries for micro and nanodevices.

CREDIT
Peter the Great St.Petersburg Polytechnic University
Researchers develop new materials for solid-state thin-film Li-ion batteries for micro and nanodevices. CREDIT Peter the Great St.Petersburg Polytechnic University

Abstract:
Researchers of Peter the Great St.Petersburg Polytechnic University (SPbPU) are developing new materials for solid-state thin-film Li-ion batteries for micro and nanodevices. The first stage of the project was successfully completed at the laboratory "Functional Materials" of the Institute of Metallurgy, Mechanical Engineering, and Transport SPbPU. The project is supported by the Russian Science Foundation (RScF).

Russian scientists investigate new materials for Li-ion batteries of miniature sensors: Researchers are developing new materials for solid-state thin-film Li-ion batteries for micro and nanodevices

St.Petersburg, Russia | Posted on May 31st, 2019

Part of the results obtained at the first stage of the project was published in the article "Atomic Layer Deposition of NiO to Produce Active Material for Thin-Film Lithium-Ion Batteries" in the journal Coatings, MDPI.

The authors suggested using a new pair of reagents to obtain the electrode materials based on nickel oxide. Researchers studied the fundamental processes taking place during the charge and discharge processes of thin-film material.

It should be noted that the lithium-ion batteries are used not only in phones and laptops but also in the whole class of micro and nanodevices such as wireless sensors, pacemakers and etc. These devices, usually, operate using thin-film current sources. The smaller the device, the thinner the power source is required. Therefore, the materials should have improved electrochemical characteristics to operate longer without additional charge.

"In the frames of the RScF project, we obtained an electrode material based on nickel oxide by atomic layer deposition (ALD) using new processes. We demonstrated its possible application in Li-ion batteries by studying its electrochemical features. In the future, we are planning to improve the materials of electrodes for thin-film batteries. It will bring us closer to a prototype of a solid-state thin-film Li-ion battery produced by ALD. I suppose that the positive results undoubtedly will be interesting for commercial application", says Maxim Maximov, leading researcher of the laboratory "Functional Materials" of the Institute of Metallurgy, Mechanical Engineering and Transport SPbPU.

####

For more information, please click here

Contacts:
Raisa Bestugina

7-812-591-6675

Copyright © Peter the Great St.Petersburg Polytechnic University (SPbPU)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project