Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Team achieves two-electron chemical reactions using light energy, gold

Under the right conditions, gold nanoparticles absorb light and transfer electrons to other reactants. This process can be used to convert CO2 and water into hydrocarbons. In the graphic, carbon atoms are black, oxygen atoms are red and hydrogen atoms are white.

Graphic by Sungju Yu / Jain Lab / University of Illinois
Under the right conditions, gold nanoparticles absorb light and transfer electrons to other reactants. This process can be used to convert CO2 and water into hydrocarbons. In the graphic, carbon atoms are black, oxygen atoms are red and hydrogen atoms are white. Graphic by Sungju Yu / Jain Lab / University of Illinois

Abstract:
Scientists are one step closer to building a carbon-recycling system that can harvest solar energy to efficiently convert CO2 and water into liquid fuels. By optimizing many parts of the system, the researchers say, they can now drive two-electron chemical reactions, a substantial advance over one-electron reactions, which are energy inefficient.

Team achieves two-electron chemical reactions using light energy, gold

Champaign, IL | Posted on May 15th, 2018

The research, reported in the journal Nature Chemistry, will aid those hoping to find a way to convert excess carbon dioxide in the atmosphere into useful energy sources, said University of Illinois chemistry professor Prashant Jain, who led the new research.

“Scientists often look to plants for insight into methods for turning sunlight, carbon dioxide and water into fuels,” he said.

When solar energy hits plant leaves, it excites the electrons in chlorophyll. Those excited electrons ultimately drive the chemistry that transforms carbon dioxide and water into glucose.

“Many of these chemical reactions are multiproton, multielectron reactions,” Jain said.

But instead of relying on biodegradable plant pigments to convert light energy into chemical energy, scientists are turning to something better: electron-rich metal catalysts like gold, which at specific light intensities and wavelengths can transfer photoexcited electrons and protons to reactants without being degraded or used up.

“In our study, we used spherical gold particles that are 13 to 14 nanometers in size,” Jain said. “The nanoparticles have unique optical properties, depending on their size and shape.”

When coated with a polymer and suspended in water, for example, the nanoparticles absorb green light and reflect a deep red color. Under light excitation, the nanoparticles transfer electrons to probe molecules, which then change color. This allows scientists to measure how efficiently the electron-transfer reactions are taking place.

“Researchers have managed in the past to use photochemistry and these light-absorbing materials to transfer one electron at a time,” Jain said. “But in the new study, we’ve identified the principles and rules and conditions under which a metal nanoparticle catalyst can transfer two electrons at a time.”

By varying the intensity of laser light used in the experiments, Jain and his colleagues discovered that at four to five times the intensity of solar energy, the gold nanoparticles in the system could transfer up to two electrons at a time from ethanol to an electron-hungry probe.

Two-electron reactions are far preferable to one-electron reactions, Jain said.

“You need a pair of electrons to make a bond between atoms,” he said. “When you don’t provide a pair of electrons – and a pair of protons to neutralize the loss of electrons – you end up making free radicals, which are highly reactive and can back-react, wasting the energy you used to create them. They also can react with other chemicals or destroy your catalyst.”

Jain also concluded that recent experiments his lab conducted using the same system also entailed multielectron, multiproton transfers. In those experiments, his lab converted CO2 to ethane, a two-carbon compound that is more energy-rich than methane, which contains only one carbon. Jain and his colleagues are hoping to eventually generate propane, which has a three-carbon backbone, and butane, which has four.

“From the point of view of chemistry, it’s interesting to understand the rules for stringing carbon atoms together,” Jain said. “Transferring more than one electron at a time, activating more than one carbon dioxide molecule at a time at the surface of the nanoparticle catalyst can get us access to higher hydrocarbons.”

While the new findings represent an important step forward, much more work must be done before this technology is ready to be employed and scaled up to meet current challenges, Jain said.

“There’s still a long way to go. I think we’ll need at least a decade to find practical CO2-sequestration, CO2-fixation, fuel-formation technologies that are economically feasible,” he said. “But every insight into the process improves the pace at which the research community can move.”

The Arnold and Mabel Beckman Foundation and the National Science Foundation supported this research.

####

For more information, please click here

Contacts:
DIANA YATES
LIFE SCIENCES EDITOR
217-333-5802


Prashant Jain
217-333-3417

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper “Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles” is available online and from the U. of I. News Bureau:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project