Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices

The blue and red cones show the energy and momentum of surface electrons in a 3D topological insulator. The spin structure is shown in the blue and red arrows at the top and bottom, respectively. Light promotes electrons from the blue cone into the red cone, with the spin direction flipping. The orderly spinning leads to the chiral spin mode observed in this study.
Hsiang-Hsi (Sean) Kung/Rutgers University-New Brunswick
The blue and red cones show the energy and momentum of surface electrons in a 3D topological insulator. The spin structure is shown in the blue and red arrows at the top and bottom, respectively. Light promotes electrons from the blue cone into the red cone, with the spin direction flipping. The orderly spinning leads to the chiral spin mode observed in this study. Hsiang-Hsi (Sean) Kung/Rutgers University-New Brunswick

Abstract:
Picture two schools of fish swimming in clockwise and counterclockwise circles. It’s enough to make your head spin, and now scientists at Rutgers University-New Brunswick and the University of Florida have discovered the “chiral spin mode” – a sea of electrons spinning in opposing circles.

A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices

New Brunswick, NJ | Posted on October 2nd, 2017

“We discovered a new collective spin mode that can be used to transport energy or information with very little energy dissipation, and it can be a platform for building novel electronic devices such as computers and processors,” said Girsh Blumberg, senior author of the study and a professor in the Department of Physics and Astronomy in Rutgers’ School of Arts and Sciences.

Collective chiral spin modes are propagating waves of electron spins that do not carry a charge current but modify the “spinning” directions of electrons. “Chiral” refers to entities, like your right and left hands, that are matching but asymmetrical and can’t be superimposed on their mirror image.

The study, led by Hsiang-Hsi (Sean) Kung, a graduate student in Blumberg’s Rutgers Laser Spectroscopy Lab, was published in Physical Review Letters. Kung used a custom-made, ultra-sensitive spectrometer to study a prototypical 3D topological insulator. A microscopic theoretical model that predicts the energy and temperature evolution of the chiral spin mode was developed by Saurabh Maiti and Professor Dmitrii Maslov at the University of Florida, strongly substantiating the experimental observation.

In a vacuum, electrons are simple, boring elementary particles. But in solids, the collective behavior of many electrons interacting with each other and the underlying platform may result in phenomena that lead to new applications in superconductivity, magnetism and piezoelectricity (voltage generated via materials placed under pressure), to name a few. Condensed matter science, which focuses on solids, liquids and other concentrated forms of matter, seeks to reveal new phenomena in new materials.

Silicon-based electronics, such as computer chips and computers, are one of the most important inventions in human history. But silicon leads to significant energy loss when scaled down. One alternative is to harness the spins of electrons to transport information through extremely thin wires, which in theory would slash energy loss.

The newly discovered “chiral spin mode” stems from the sea of electrons on the surface of “3D topological insulators.” These special insulators have nonmagnetic, insulating material with robust metallic surfaces, and the electrons are confined so they move only on 2D surfaces.

Most importantly, the electrons’ spinning axes are level and perpendicular to their velocity. Chiral spin modes emerge naturally from the surface of such insulating materials, but they were never observed before due to crystalline defects. The experimental observation in the current study was made possible following the development of ultra-clean crystals by Rutgers doctoral student Xueyun Wang and Board of Governors Professor Sang-Wook Cheong in the Rutgers Center for Emergent Materials.

The discovery paves new paths for building next generation low-loss electronic devices. The research at Rutgers was funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Todd B. Bates
Science Communicator, Public and Media Relations
Rutgers University-New Brunswick
101 Somerset Street
New Brunswick, NJ 08901-1281
O: 848-932-0550 | C: 908-208-3422 | F: 732-932-8412

http://newbrunswick.rutgers.edu/

Copyright © Rutgers University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Hardware

The present and future of computing get a boost from new research July 21st, 2023

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project