Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > What the world's tiniest 'monster truck' reveals

Ohio University's nano-sized monster truck led to a curious finding.
CREDIT
Eric Masson, Ph.D.
Ohio University's nano-sized monster truck led to a curious finding. CREDIT Eric Masson, Ph.D.

Abstract:
Title
Frame suspended into four Cucurbituril wheels: Meet the Ohio Bobcat Nanowagon

Abstract
We present the design, synthesis and characterization of the Ohio Bobcat Nanowagon, a [5]pseudorotaxane assembly bearing an H-shaped frame threaded into four Cucurbit[7]uril (CB[7]) wheels. The key motifs in the frame are two benzimidazolium groups, which link a terphenyl drive shaft (the horizontal bar of the "H" frame) to the axle shafts (the vertical bars of the "H" frame). Four pyridinium units terminate the latter. Positive charges at the pyridinium and benzimidazolium units allow the frame and the CB[7] wheels to assemble into the final nanowagon in water. The white solid obtained upon freeze-drying was used for successful scanning tunneling microscopy imaging (STM).

What the world's tiniest 'monster truck' reveals

Washington, DC | Posted on August 24th, 2017

The world's shortest race by distance -- a fraction of the width of a human hair -- was run on gold and silver tracks, and took a whopping 30 hours. Given that the vehicles were invisible to the naked eye, your typical racing fan might have missed it. But the April "nanorace" was a huge success for scientists working at the nanoscale. It spurred interest in molecular machines and led to a surprising new discovery, reports the team that entered a nano-sized "monster truck."

The researchers are presenting their nanocar research today at the 254th National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features nearly 9,400 presentations on a wide range of science topics.

"The overarching goal was to advertise nanoscience to the public," Eric Masson, Ph.D., says. "Then there was the technical challenge of manipulating multiple nanocars at the same time using a scanning tunneling microscope, or STM, instrument. Additionally, every team had its own goal. Ours was to see if we could deposit an intact supramolecular assembly onto a surface, and control its motion."

Masson and Saw-Wai Hla, Ph.D., co-led the team from Ohio University. They designed and built the largest car at about 3.5 nanometers in length. Officially called the Bobcat Nanowagon, it had a pseudorotaxane H-shaped frame with four relatively large cucurbituril molecules as wheels. Because of the size, it was ironically dubbed a monster truck. But unlike normal vehicles, it didn't have a motor. So to move the nanocar, the researchers used the STM instrument in Hla's lab.

"We incorporated positive charge receptors in the car," Hla says. "So if we injected a positive charge in the STM tip pointed at the car, there would be repulsion, and the car would move. We found it worked very well."

The competition, billed as the first-ever nanocar race, was held at the French National Center for Scientific Research (CNRS) in Toulouse on April 28. Six teams from three continents entered their molecule-sized racers. But because the STM instrument in Toulouse only had four tips that could each control only one nanocar, the Ohio team kept their nanowagon in Hla's lab but "drove" it remotely from CNRS.

"My understanding is that this was a first," Hla says. "We manipulated the car at the atomic scale from half a globe away."

Hla and Masson's nanowagon traveled 43 nanometers on the gold track before it got stuck due to a particularly rough section of the track and a power blip in the Midwest. Although it didn't complete the course, it went farther than three other contestants, earning the team a third-place showing.

Masson and Hla say the Ohio team uncovered something intriguing as a result of the race. They had assembled the nanowagon by suspending the chassis molecules in water, adding the wheel molecules and then evaporating the water. About 70 percent of the resulting structures looked like two-wheeled hover boards, a few had three wheels, and about 10 percent had all four wheels. They were surprised to find that very few wheels weren't connected to anything.

"That means that it was easier to break the chassis, a covalent bond, than to break the noncovalent bonds between the chassis and the wheels," Masson says. "That's completely counterintuitive because typically a noncovalent bond is much weaker than a covalent bond. It's a theoretical curiosity."

How this information might apply ultimately to molecular machines in the future remains unknown, although many scientists envision that tiny vehicles like these could be used in electronics and data storage. Masson and Hla both stress that the work is still in its early stages. Before applications come along, scientists need to understand how molecules behave at the atomic scale.

"Our excitement is really about the fundamental science," Hla says. "This is just the beginning."

The researchers acknowledge funding from the National Science Foundation, Ohio University, and the U.S. Department of Energy, Basic Energy Sciences grant DE-FG02-02ER46012.

####

About American Chemical Society
The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
ACS Press Center in D.C., Aug. 20-23
202-249-4007


Katie Cottingham, Ph.D.
301-775-8455 (Cell)

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Hardware

The present and future of computing get a boost from new research July 21st, 2023

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project