Home > Press > Alloying materials of different structures offers new tool for controlling properties
![]() |
Abstract:
New research into the largely unstudied area of heterostructural alloys could lead to greater materials control and in turn better semiconductors, advances in nanotechnology for pharmaceuticals and improved metallic glasses for industrial applications.
Heterostructural alloys are blends of compounds made from materials that don't share the same atom arrangement. Conventional alloys are isostructural, meaning the compounds they consist of, known as the end members, have the same crystal structure.
"Alloys are all around us," said study co-author Janet Tate, a physicist at Oregon State University. "An example of an istostructural alloy is an LED; you have a semiconductor like aluminum gallium arsenide, dope it with a particular material and make it emit light, and change the color of the light by changing the relative concentration of aluminum and gallium."
Structure and composition are the two means of controlling the behavior of materials, Tate said. Combining materials gives the alloy properties between those that the end members have on their own.
"If two materials have different structures, as you mix them together it's not so clear which structure will win," said Tate, the Dr. Russ and Dolores Gorman Faculty Scholar in the College of Science. "The two together want to take different structures, and so this is an extra way of tuning an alloy's properties, a structural way. The transition between different crystal structures provides an additional degree of control."
Tate and collaborators from around the world, including the National Renewable Energy Laboratory, published their findings in Science Advances.
"This is a very interesting piece of materials science that represents a somewhat uncharted area and it may be the beginning something quite important," Tate said. "The heterostructural alloy concept had been known before, but it's different enough that it hadn't really been explored in a detailed phase diagram - the mapping of exactly how, at what temperature and what concentration, it goes from one structure to another.
"This paper is primarily the NERL's theoretical work being supported by other collaborators' experimental work," Tate said. "Our involvement at OSU was in making one of the kinds of heterostructural alloys used in the research, the combination of tin sulfide and calcium sulfide."
Tate and graduate student Bethany Matthews have been focusing on the semiconductor application.
"Tin sulfide is a solar cell absorber, and the addition of calcium sulfide changes the structure and therefore the electrical properties necessary for an absorber," Tate said "Combining tin sulfide with calcium sulfide makes it more isotropic - properties being the same regardless of orientation - and that's usually a useful thing in devices."
In this study, thin-film synthesis confirmed the metastable phases of the alloys that had been predicted theoretically.
"Many alloys are metastable, not stable - if you gave them enough time and temperature, they'd eventually separate," Tate said. "The way we make them, with pulsed laser deposition, we allow the unstable structure to form, then suppress the decomposition pathways that would allow them to separate; we don't give them enough time to equilibrate."
Metastable materials - those that are thermodynamically stable provided they are not subjected to large disturbances - are in general understudied, Tate said.
"When theorists predict properties, they tend to work with materials that are stable," she said. "In general the stable compounds are easier to attack. The idea here with heterostructural alloys is that they give us a new handle, a new knob to turn to change and control materials' properties."
###
In addition to scientists at the National Renewable Energy Laboratory, the collaboration included researchers at the University of Colorado, the Colorado School of Mines, the SLAC National Accelerator Laboratory, and Harvard University.
The U.S. Department of Energy supported this research.
####
For more information, please click here
Contacts:
Janet Tate
541-737-1700
Copyright © Oregon State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Laboratories
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Chip Technology
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Industrial
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||