Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone

At left, Janus droplets viewed from above. After the droplets encounter their target, a bacterial protein, they clump together (right).

Image: Qifan Zhang
At left, Janus droplets viewed from above. After the droplets encounter their target, a bacterial protein, they clump together (right). Image: Qifan Zhang

Abstract:
The foodborne pathogen Escherichia coli O157 causes an estimated 73,000 illnesses and 60 deaths every year in the United States. Better safety tests could help avoid some of the illnesses caused by this strain of E. coli and other harmful bacteria, according to MIT researchers who have come up with a possible new solution.

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone

Cambridge, MA | Posted on April 7th, 2017

The new MIT test is based on a novel type of liquid droplet that can bind to bacterial proteins. This interaction, which can be detected by either the naked eye or a smartphone, could offer a much faster and cheaper alternative to existing food safety tests.

"It's a brand new way to do sensing," says Timothy Swager, the John D. MacArthur Professor of Chemistry at MIT and the senior author of the study. "What we have here is something that can be massively cheaper, with low entry costs."

Qifan Zhang, an MIT graduate student, is the lead author of the paper, which appears in the journal ACS Central Science. Other authors are Suchol Savagatrup, an MIT postdoc; Peter Seeberger, director of the Max Planck Institute of Colloids and Interfaces in Germany; and Paulina Kaplonek, a graduate student at the Max Planck Institute.

Detecting bacteria

Two years ago, Swager's lab developed a way to easily make complex droplets including droplets called Janus emulsions. These Janus droplets consist of two equally sized hemispheres, one made of a fluorocarbon and one made of a hydrocarbon. Fluorocarbon is denser than hydrocarbon, so when the droplets sit on a surface, the fluorocarbon half is always at the bottom.

The researchers decided to explore using these droplets as sensors because of their unique optical properties. In their natural state, the Janus droplets are transparent when viewed from above, but they appear opaque if viewed from the side, because of the way that light bends as it travels through the droplets.

To turn the droplets into sensors, the researchers designed a surfactant molecule containing mannose sugar to self-assemble at the hydrocarbon-water interface, which makes up the top half of the droplet surface. These molecules can bind to a protein called lectin, which is found on the surface of some strains of E. coli. When E. coli is present, the droplets attach to the proteins and become clumped together. This knocks the particles off balance, so that light hitting them scatters in many directions, and the droplets become opaque when viewed from above.

"We're using the native molecular recognition that these pathogens use. They recognize each other with these weak carbohydrate-lectin binding schemes." Swager says. "We took advantage of the droplets' multivalency to increase the binding affinity, and this is something that is very different than what other sensors are using."

To demonstrate how these droplets could be used for sensing, the researchers placed them into a Petri dish atop a QR code that can be scanned with a smartphone. When E. coli are present, the droplets clump together and the QR code can't be read.

Faster and cheaper

Current food safety testing often involves placing food samples in a culture dish to see if harmful bacterial colonies form, but that process takes two to three days. More rapid techniques based on bacterial DNA amplification or antibody-bacteria interactions are expensive and require special instruments.

The MIT team hopes to adapt its new technology into arrays of small wells, each containing droplets customized to detect a different pathogen and linked to a different QR code. This could enable rapid, inexpensive detection of contamination using only a smartphone.

"The great advantage of our device is you don't need specialized instruments and technical training in order to do this," Zhang says. "That can enable people from the factory, before shipping the food, to scan and test it to make sure it's safe."

The researchers are now working on optimizing the food sample preparation so they can be placed into the wells with the droplets. They also plan to create droplets customized with more complex sugars that would bind to different bacterial proteins. In this paper, the researchers used a sugar that binds to a nonpathogenic type of E. coli, but they expect that they could adapt the sensor to other strains of E. coli and other harmful bacteria.

"You could imagine making really selective droplets to catch different bacteria, based on the sugar we put on them," Savagatrup says.

The researchers are also trying to improve the sensitivity of the sensor, which currently is similar to existing techniques but has the potential to be much greater, they believe. They hope to launch a company to commercialize the technology within the next year and a half.

###

The research was funded by the Abdul Latif Jameel World Water and Food Security Lab (J-WAFS) at MIT, the U.S. Army Research Office through the MIT Institute for Soldier Nanotechnologies, the Legatum Center for Development and Entrepreneurship at MIT, the Alexander von Humboldt Foundation, the Max-Planck Society, and the German Research Foundation.

####

For more information, please click here

Contacts:
Sarah McDonnell

671-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: “Janus Emulsions for the Detection of Bacteria”:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project