Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Precise quantum cloning: possible pathway to secure communication: Physicists create best ever quantum clones

Beam of light passing through splitter.
CREDIT
Lee Henderson/UNSW
Beam of light passing through splitter. CREDIT Lee Henderson/UNSW

Abstract:
Physicists at The Australian National University (ANU) and University of Queensland (UQ) have produced near-perfect clones of quantum information using a new method to surpass previous cloning limits.

Precise quantum cloning: possible pathway to secure communication: Physicists create best ever quantum clones

Sydney, Australia | Posted on October 26th, 2016

A global race is on to use quantum physics for ultra-secure encryption over long distances according to Prof Ping Koy Lam, node director of the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) at ANU.

The new cloning method uses high performance optical amplifiers to clone light encoded with quantum information -- it is possible this technique could allow quantum encryption to be implemented with existing fibre optic infrastructure.

"One obstacle to sending quantum information is that the quantum state degrades before reaching its destination. Our cloner has many possible applications, and could help overcome this problem to achieve secure long distance communication," said Prof Lam.

The laws of physics -- in particular the 'No Cloning Theorem' -- prevent high quality clones being produced with a 100 percent success rate. The team, led by Prof Lam, uses a probabilistic method to demonstrate that it's possible to produce clones that exceed theoretical quality limits. The method was initially proposed by CQC2T researchers led by Prof Timothy Ralph at UQ.

"Imagine Olympic archers being able to choose the shots that land closest to the target's centre to increase their average score," said Prof Ralph.

"By designing our experiment to have probabilistic outputs, we sometimes 'get lucky' and recover more information than is possible using existing deterministic cloning methods. We use the results closest to a 'bullseye' and discard the rest," he said.

quantum information is that the probabilistic method is permitted, and is useful in many crypto-communication situations, such as generating secret keys.

"Our probabilistic cloning method generates higher quality quantum clones than have ever been made before, with a success rate of about 5 percent. We can now create up to five clones of a single quantum state," said lead author Jing Yan Haw, ANU PhD researcher.

"We first encode information onto a light beam. Because this information is in a fragile quantum state, it is difficult to observe or measure," said Haw.

"At the heart of the demonstration is a 'noiseless optical amplifier'. When the amplification is good enough, we can then split a light beam into clones. 'Amplify-then-split' allows us to clone the light beam with minimal distortion, so that it can still be read with exquisite precision," said Prof Ralph.

Quantum cloning opens up important experimental possibilities as well as having applications in ultra-secure long distance quantum networks.

"One of the problems with quantum encryption is its limited communication range. We hope this technology could be used to extend the range of communication, and one day lead to impenetrable privacy between two communicating parties," said Prof Lam.

This latest achievement follows the success of fellow CQC2T researchers at ANU, who last month were the first to demonstrate self-stabilising stationary light.

####

For more information, please click here

Contacts:
Kristin O'Connell

61-293-857-551

Copyright © Centre of Excellence for Quantum Computation and Communication Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The quantum cloning results are published in Nature Communications:

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Quantum communication

Next-generation quantum communication October 3rd, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project