Home > Press > World's most powerful X-ray takes a 'sledgehammer' to molecules
![]() |
| An international team of more than 20 scientists has inadvertently discovered how to create a new type of crystal using light more than ten billion times brighter than the sun. |
Abstract:
The discovery, led by Associate Professor Brian Abbey at La Trobe in collaboration with Associate Professor Harry Quiney at the University of Melbourne, has been published in the journal Science Advances. Their findings reverse what has been accepted thinking in crystallography for more than 100 years.
The team exposed a sample of crystals, known as Buckminsterfullerene or Buckyballs, to intense light emitted from the world's first hard X-ray free electron laser (XFEL), based at Stanford University in the United States. The molecules have a spherical shape forming a pattern that resembles panels on a soccer ball.
Light from the XFEL is around one billion times brighter than light generated by any other X-ray equipment --even light from the Australian Synchrotron pales in comparison. Because other X-ray sources deliver their energy much slower than the XFEL, all previous observations had found that the X-rays randomly melt or destroy the crystal. Scientists had previously assumed that XFELs would do the same.
The result from the XFEL experiments on Buckyballs, however, was not at all what scientists expected. When the XFEL intensity was cranked up past a critical point, the electrons in the Buckyballs spontaneously re-arranged their positions, changing the shape of the molecules completely.
Every molecule in the crystal changed from being shaped like a soccer ball to being shaped like an AFL ball at the same time. This effect produces completely different images at the detector. It also altered the sample's optical and physical properties.
"It was like smashing a walnut with a sledgehammer and instead of destroying it and shattering it into a million pieces, we instead created a different shape - an almond!" Assoc. Prof. Abbey said.
"We were stunned, this is the first time in the world that X-ray light has effectively created a new type of crystal phase" said Associate Professor Quiney, from the School of Physics, University of Melbourne.
"Though it only remains stable for a tiny fraction of a second, we observed that the sample's physical, optical and chemical characteristics changed dramatically, from its original form," he said.
"This change means that when we use XFELs for crystallography experiments we will have to change the way interpret the data. The results give the 100-year-old science of crystallography a new, exciting direction," Assoc. Prof. Abbey said.
"Currently, crystallography is the tool used by biologists and immunologists to probe the inner workings of proteins and molecules -- the machines of life. Being able to see these structures in new ways will help us to understand interactions in the human body and may open new avenues for drug development."
###
The study was conducted by researchers from the ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, the University of Melbourne, Imperial College London, the CSIRO, the Australian Synchrotron, Swinburne Institute of Technology, the University of Oxford, Brookhaven National Laboratory, the Stanford Linear Accelerator (SLAC), the BioXFEL Science and Technology Centre, Uppsala University and the Florey Institute of Neuroscience and Mental Health.
####
For more information, please click here
Contacts:
Nerissa Hannink
61-430-588-055
Copyright © University of Melbourne
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Laboratories
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Govt.-Legislation/Regulation/Funding/Policy
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Tools
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||