Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The switch that could double USB memory

Using two forms of strontium cobalt oxide with different oxygen content, the device can be switched from an insulating/non-magnet state to a metallic/magnet state simultaneously by electrochemical oxidation/reduction reaction at room temperature in air.
CREDIT: Hiromichi OHTA, Hokkaido University
Using two forms of strontium cobalt oxide with different oxygen content, the device can be switched from an insulating/non-magnet state to a metallic/magnet state simultaneously by electrochemical oxidation/reduction reaction at room temperature in air.

CREDIT: Hiromichi OHTA, Hokkaido University

Abstract:
Scientists at Hokkaido University have developed a device that employs both magnetic and electronic signals, which could provide twice the storage capacity of conventional memory devices, such as USB flash drives.

The switch that could double USB memory

Hokkaido, Japan | Posted on July 3rd, 2016

Conventional USB flash drives are electronic data storage devices. They store information by using millions of small gates that process information into "words" consisting of various combinations of the numbers 0 and 1.

A team of scientists at Hokkaido University's Research Institute for Electronic Science investigated the possibility of using a magnetic signal along with the electronic signal to allow double the storage capacity in these "multiplex writing/reading" devices. In addition to the binary 0/1 method of storing information, this would add an A/B store for the information as well. To do this would require finding a material that can switch back and forth from a magnet to a non-magnet state.

Using two forms of strontium cobalt oxide with different oxygen content, the device can be switched from an insulating/non-magnet state to a metallic/magnet state simultaneously by electrochemical oxidation/reduction reaction at room temperature in air. The use of magnetic signal along with electronic signal Using two forms of strontium cobalt oxide with different oxygen content, the device can be switched from an insulating/non-magnet state to a metallic/magnet state simultaneously by electrochemical oxidation/reduction reaction at room temperature in air.[copyright: Hiromichi OHTA, Hokkaido University]

The team investigated two forms of strontium cobalt oxide (SrCoOx): one is an insulating non-magnet while the other is a metal magnet. By changing the oxygen content in this compound, the team could cause it to switch between the two forms. However, the two methods currently available to do this have big drawbacks. One method requires using a high temperature heat treatment. This would make it impossible to use in devices that work at room temperature, such as your mobile phone. The other method involves using a dangerous alkaline solution. This would require a device that is sealed so that the solution does not leak. This method is difficult to miniaturize and is thus not suitable for information storage devices.

The team developed a new method to use strontium cobalt oxide safely at room temperature in air. They applied a sodium tantalate thin film, which can be used at room temperature without leaking alkaline solution, over layers of strontium cobalt oxide. When a three-volt current was applied (or about one-seventh of the voltage required in currently available USB flash drives), the insulating form of SrCoO2.5 reversibly switched to its metal magnet form, SrCoO3, in three seconds. By comparison, current devices can store information in 0.01 seconds. Making the device smaller would shorten the time needed for the compound to switch between an insulator and a magnet, the researchers say. This would allow the storage of an even larger number of photos and videos in mobile phones, for example.

####

For more information, please click here

Contacts:
Naoki NAMBA (Media Officer)

81-117-068-034

Copyright © Hokkaido University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project