Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ORNL neutron 'splashes' reveal signature of exotic particles

This rendering illustrates the excitation of a spin liquid on a honeycomb lattice using neutrons. As with many other liquids, it is difficult to see a spin liquid unless it is 'splashed,' in this case by neutrons depicted as moving balls. The misaligned and vibrating spin pair in the middle signifies the ephemeral Majorana fermion constantly in motion. The ripples formed when the neutrons hit the spin liquid represent the excitations that are a signature of the Majorana fermions. The atomic structure on the left signifies the honeycomb alpha-ruthenium trichloride, in which each ruthenium atom has a spin and is surrounded by a cage of chlorine atoms.
CREDIT: Genevieve Martin/ORNL
This rendering illustrates the excitation of a spin liquid on a honeycomb lattice using neutrons. As with many other liquids, it is difficult to see a spin liquid unless it is 'splashed,' in this case by neutrons depicted as moving balls. The misaligned and vibrating spin pair in the middle signifies the ephemeral Majorana fermion constantly in motion. The ripples formed when the neutrons hit the spin liquid represent the excitations that are a signature of the Majorana fermions. The atomic structure on the left signifies the honeycomb alpha-ruthenium trichloride, in which each ruthenium atom has a spin and is surrounded by a cage of chlorine atoms.

CREDIT: Genevieve Martin/ORNL

Abstract:
Researchers at the Department of Energy's Oak Ridge National Laboratory used neutrons to uncover novel behavior in materials that holds promise for quantum computing. The findings, published in Nature Materials, provide evidence for long-sought phenomena in a two-dimensional magnet.

ORNL neutron 'splashes' reveal signature of exotic particles

Oak Ridge, TN | Posted on April 10th, 2016

In 2006, the physicist Alexei Kitaev developed a theoretical model of microscopic magnets ("spins") that interact in a fashion that leads to a disordered state called a quantum spin liquid. This "Kitaev quantum spin liquid" supports magnetic excitations equivalent to Majorana fermions--particles that are unusual in that they are their own antiparticles.

The presence of Majorana fermions is of great interest because of their potential use as the basis for a qubit, the essential building block of quantum computers.

Familiar magnetic materials exhibit magnetic excitations called "spin-waves" that occur in quantized lumps, but in the Kitaev quantum spin liquid, the lumps are split and the Majorana excitations are therefore termed "fractionalized."

Scientists have theorized that Kitaev interactions exist in nature in certain materials containing magnetic ions that exhibit strong coupling between the electron spin and orbital angular momentum. Arnab Banerjee, the study's lead author and a post-doctoral researcher at ORNL, explained that one way to observe spin liquid physics in such a material is to "splash" or excite the liquid using neutron scattering.

Banerjee and colleagues from ORNL and the University of Tennessee, working with collaborators from the Max Planck Institute in Dresden, Germany and Cambridge University in the United Kingdom, used the "splash" technique to investigate a two-dimensional graphene-like material, alpha-ruthenium trichloride. Neutrons shining onto and scattering from the material can deposit small amounts of energy that create magnetic excitations.

The form of magnetic excitations created in alpha-ruthenium trichloride?was found to be different from spin waves seen in ordinary magnets, but was very well-matched to the spectrum predicted for the Majorana fermions expected in the Kitaev quantum spin liquid.

"The concept of Majorana fermion originated in fundamental high energy particle physics, but we saw their signatures in a solid state material at modest temperatures," Banerjee said. "Neutron scattering not only provided the 'splash' we needed to see them, but also directly measured the resulting magnetic excitations.

The Spallation Neutron Source's SEQUOIA instrument is best suited for this research because the range of energy and momentum one can access with the instrument perfectly matches the regime where Majorana fermions show up."

"The observation of these fractionalized excitations is truly remarkable," said Steve Nagler, director of the Quantum Condensed Matter Division at ORNL and co-corresponding author of the paper. "There has been a huge push recently to see if Kitaev quantum spin liquid physics can be found in materials. Time will tell whether this represents a first step on the road to a new qubit technology."

The experiment required extremely pure samples that were prepared by Banerjee and Craig Bridges of ORNL. The interpretation of the experiments was helped by theoretical predictions of team members Roderich Moessner of the Max Planck Institute, and Johannes Knolle of Cambridge and their colleagues.

"This study proved that the proper honeycomb lattice materials can have the exotic excitations long sought by the scientific community, potentially bringing us closer to realizing Kitaev's vision of topologically protected quantum information," said Alan Tennant, chief scientist for Neutron Sciences at ORNL and a co-author on the paper.

###

The research team also included Jiaqiang Yan, Adam Aczel, Matthew Stone, Garrett Granroth, and Mark Lumsden from ORNL, David Mandrus, a joint faculty of University of Tennessee and ORNL, Ling Li and Yuen Yiu from the University of Tennessee, Dmitry Kovrizhin from Cambridge, and Subhro Bhattacharjee from the Max Planck Institute. The paper is published as "Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet."

####

About Oak Ridge National Laboratory
The Spallation Neutron Source and the High Flux Isotope Reactor are DOE Office of Science User Facilities. UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov/.

For more information, please click here

Contacts:
Katie Bethea

865-576-8039

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project