Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CWRU researchers make biosensor 1 million times more sensitive: Advance aims at detecting cancers earlier, improving treatment and outcomes

Abstract:
Physicists and engineers at Case Western Reserve University have developed an optical sensor, based on nanostructured metamaterials, that's 1 million times more sensitive than the current best available--one capable of identifying a single lightweight molecule in a highly dilute solution.

CWRU researchers make biosensor 1 million times more sensitive: Advance aims at detecting cancers earlier, improving treatment and outcomes

Cleveland, OH | Posted on March 29th, 2016

Their goal: to provide oncologists a way to detect a single molecule of an enzyme produced by circulating cancer cells. Such detection could allow doctors to diagnose patients with certain cancers far earlier than possible today, monitor treatment and resistance and more.

"The prognosis of many cancers depends on the stage of the cancer at diagnosis" said Giuseppe "Pino" Strangi, professor of physics at Case Western Reserve and leader of the research.

"Very early, most circulating tumor cells express proteins of a very low molecular weight, less than 500 Daltons," Strangi explained. "These proteins are usually too small and in too low a concentration to detect with current test methods, yielding false negative results.

"With this platform, we've detected proteins of 244 Daltons, which should enable doctors to detect cancers earlier--we don't know how much earlier yet," he said. "This biosensing platform may help to unlock the next era of initial cancer detection."

The researchers believe the sensing technology will also be useful in diagnosing and monitoring other diseases as well.

Their research is published online in the journal Nature Materials. It was a terrific teamwork, Strangi said. He worked with postdoctoral researchers Kandammathee Valiyaveedu Sreekanth and Efe Ilker, PhD students Yunus Alapan and Mohamed ElKabbash, Assistant Professor of Physics Michael Hinczewski, Assistant Professor of Aerospace and Mechanical Engineering Umut Gurkan (co-PI) and Antonio De Luca, who was a visiting research scholar in Strangi's lab during this study and is now an associate professor of physics at the University of Calabria in Italy.

The science

The nanosensor, which fits in the palm of a hand, acts like a biological sieve, isolating a small protein molecule weighing less than 800 quadrillionths of a nanogram from an extremely dilute solution.

To make the device so sensitive, Strangi's team faced two long-standing barriers: Light waves cannot detect objects smaller than their own physical dimensions, which range down to about half a micron. And molecules in dilute solutions float in Brownian motion and are unlikely to land on the sensor's surface.

By harnessing nanotechnology tools and by coupling a microfluidic channel with an engineered material called a metamaterial, the scientist overcame the limits.

The microfluidic channel restricts the molecules' ability to float around and drives them to the sensing area on the surface of the metamaterial.

The metamaterial is made of a total of 16 nanostructured layers of reflective and conductive gold and transparent aluminum oxide, a dielectric, each 10s of atoms thick. Light directed onto and through the layers is concentrated into a very small volume much smaller than the wavelength of light.

The top gold layer is perforated with holes, creating a grating that diffuses light shone on the surface into two dimensions.

The incoming light, which is several hundreds of nanometers in wavelength, appears to be confined and concentrated in a few nanometers at the interface between the gold and the dielectric layer.

As the light strikes the sensing area, it excites free electrons causing them to oscillate and generate a highly confined propagating surface wave, called a surface plasmon polariton. This propagating surface wave will in turn excite a bulk wave propagating across the sensing platform. The presence of the waves cause deep sharp dips in the spectrum of reflecting light.

The combination and the interplay of surface plasmon and bulk plasmon waves are what make the sensor so sensitive. Strangi said. By exciting these waves through the eight bilayers of the metamaterial, they create remarkably sharp resonant modes.

Extremely sharp and sensitive resonances can be used to detect smaller objects.

"It's extremely sensitive," Strangi said. "When a small molecule lands on the surface, it results in a large local modification, causing the light to shift."

The potential

Depending on the size of the molecule, the reflecting light shifts different amounts. The researchers hope to learn to identify specific molecules, beginning with biomarkers for different cancers, by their light shifts.

To add specificity to the sensor, the team added a layer of trap molecules, which are molecules that bind specifically with the molecules they hunt.

In tests, the researchers used trap molecules to catch two different biomolecules: bovine serum albumin, with a molecular weight of 66,430 Daltons, and biotin, with a molecular weight of 244 Daltons. Each produced a signature light shift.

Other researchers have reported using plasmon-based biosensors to detect biotin in solutions at concentrations ranging from more than 100 micromoles per liter to 10 micromoles per liter. This device proved 1 million times more sensitive, finding and identifying biotin at a concentration of 10 picomoles per liter.

Testing and implications

In Cleveland, Strangi and Nima Sharifi, MD, co-leader of the Genitourinary Cancer Program for the Case Comprehensive Cancer Center, have begun testing the sensor with proteins related to prostate cancers.

"For some cancers, such as colorectal and pancreatic cancer, early detection is essential," said Sharifi, who is also the Kendrick Family Chair for Prostate Cancer Research at Cleveland Clinic. "High sensitivity detection of cancer-specific proteins in blood should enable detection of tumors when they are at an earlier disease stage.

"This new sensing technology may help us not only detect cancers, but what subset of cancer, what's driving its growth and spread and what it's sensitive to," he said. "The sensor, for example, may help us determine markers of aggressive prostate cancers, which require treatments, or indolent forms that don't."

Strangi's lab is working with other oncologists worldwide to test the device and begin moving the sensor toward clinical use.

"We consider this just the beginning of our research," he said.

####

For more information, please click here

Contacts:
Kevin Mayhood

216-534-7183

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Cancer

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

University of Toronto researchers discover new lipid nanoparticle that shows muscle-specific mRNA delivery, reduces off-target effects: Study findings make significant contribution to generating tissue-specific ionizable lipids and prompts rethinking of mRNA vaccine design princi December 8th, 2023

Super-efficient laser light-induced detection of cancer cell-derived nanoparticles: Skipping ultracentrifugation, detection time reduced from hours to minutes! October 6th, 2023

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project