Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Preventing protein unfolding: Polymers can reinforce proteins under mechanical forces

Keten's work is featured on the cover of February's ACS Nano.
Keten's work is featured on the cover of February's ACS Nano.

Abstract:
When the body loses its ability to fold proteins into the correct shapes, the result can be irreversible and tragic. The accumulation of unfolded or misfolded proteins in the brain causes many devastating neurodegenerative diseases, including Alzheimer's, Parkinson's and amyotrophic lateral sclerosis (ALS).

Preventing protein unfolding: Polymers can reinforce proteins under mechanical forces

Evanston, IL | Posted on February 27th, 2016

In order to maintain their functions, structural proteins and engineered, protein-based materials need to avoid unfolding even under large mechanical stresses. Scientists, therefore, are exploring ways to design proteins that can survive extreme mechanical insults.

Northwestern Engineering's Sinan Keten has theoretically demonstrated that small proteins can be reinforced with covalently bonded polymers against mechanical unfolding. His computational model illustrates strategies for using this polymer conjugation to prevent proteins from rapidly unfolding even when stretched or pulled apart.

"If you apply a stress to a protein, we know it will start to unfold," said Keten, assistant professor of mechanical, civil and environmental engineering. "Given that proteins are subject to mechanical forces in the body and in all applications, it will be useful to reinforce them in this way."

Supported by the Office of Naval Research, Keten's research is featured on the cover of the February issue of the journal ACS Nano. Elizabeth DeBenedictis, a PhD student in Keten's lab, and Elham Hamed, a former postdoctoral fellow in Keten's lab, are the paper's first authors. DeBenedictis also created the painting that was used for the journal's cover image.

A protein's shape is related to its function. By coiling and folding into specific three-dimensional shapes, they are able to perform their different biological tasks. Proteins are held together by weak hydrogen bonds. When they unfold, these bonds break and are often replaced by hydrogen bonds with water.

"Once the water is in there, it's hard to reverse the process," Keten explained. "It's hard for the protein to refold."

Researchers have long known that attaching polymers to proteins can stabilize them thermally. But little is known from a mechanical perspective. Keten's team used a common protein structure, called an alpha helix, and a soft, nontoxic polymer called poly-ethylene-glycol to test the reinforcing strategy under mechanical forces. They found that, through hydrophobic and electrostatic interactions, the polymer can reside near the surface of the protein. This shields its backbone hydrogen bonds from being replaced by bonds with water molecules, enabling the protein to hold its specific shape much longer under constant stress.

"The protein can refold back to its original configuration more easily," he said. "When the polymer is close to the surface, you see refolding."

Not only could this finding inform medicine about how to treat or prevent protein unfolding diseases, but the method could be used to stabilize protein-based biomaterials, which is important giving vaccines longer shelf lives, improving drug delivery and creating stronger scaffolds for tissue engineering.

Next, Keten's team will create a design strategy for determining polymer and protein interfaces that work well together. The team also collaborates with experimental groups to explore applications that may benefit from Keten's computational models.

####

For more information, please click here

Contacts:
Hilary Hurd Anyaso

847-491-4887

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Life Extension/Cryonics

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

Multicolor super resolution imaging: A method to monitor dynamic protein binding at subsecond timescales June 19th, 2016

Lifeboat Foundation launches 3 books December 16th, 2015

Hopes of improved brain implants October 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project