Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The subtle dance of atoms influences enzyme activity: Certain infinitesimal fluctuations of distant atoms can control enzyme function even though they are not directly involved in enzyme catalysis

Abstract:
Infinitesimal fluctuations occurring on the milli- and even nano-second time scales within the three-dimensional structure of enzymes may be one of the keys to explaining protein function. Professor Nicolas Doucet's team at INRS has demonstrated that even when certain amino acids are far from the active site of an enzyme, a change in their flexibility and atomic fluctuations can significantly impact enzyme activity. This phenomenon, which has been underestimated up to now, could explain certain protein engineering failures and help improve the way synthetic functional enzymes are designed.

The subtle dance of atoms influences enzyme activity: Certain infinitesimal fluctuations of distant atoms can control enzyme function even though they are not directly involved in enzyme catalysis

Québec, Canada | Posted on December 10th, 2015

Enzymes are nanomachines that are exceptionally efficient at catalyzing a chemical reaction. They play a role in all cellular mechanisms. Like all proteins, they are made up of amino acid chains that are folded and assembled in a very precise 3D structure. Some enzymes, like ribonuclease A, are so efficient that they catalyze the transformation of chemical molecules thousands of times per second.

In this study, Donald Gagné, a researcher in Professor Doucet's lab holding a PhD in biology from INRS, analyzed the impact of removing a methyl group located near a loop distant from the reaction site of ribonuclease A--a very slight change that presumably would have no effect. The mutation does not perturb the 3D structure of the enzyme. However, it did result in a four-fold reduction in the affinity of ribonuclease A for nucleotides (molecules to which it must bind to carry out its function). How is this possible?

Using crystallography techniques and nuclear magnetic resonance to examine the enzyme at atomic resolution, Donald Gagné compared normal ribonuclease A with the mutated enzyme. He observed that when ribonuclease A is modified, the nucleotides do not position themselves correctly and have a harder time binding to the active site. It appears that this repositioning is due to an increase in enzyme fluctuations caused by the elimination of this distant methyl group, which we can picture as creating vibrations that spread through the enzyme structure all the way to the site of catalysis.

This demonstration of the importance of enzyme dynamics could change our understanding of protein and enzyme mechanisms. While it remains a challenge to measure fluctuations at this atomic scale, researchers have studied the three-dimensional structure of proteins to understand how they function. Despite the staggering complexity of this phenomenon, we now know that proteins are increasingly regulated by the subtle dance of their atoms.

####

About INRS
INRS is a graduate-level research and training university and ranks first in Canada for research intensity (average grant funding per faculty member). INRS brings together some 150 professors and close to 700 students and postdoctoral fellows in its four centres located in Montreal, Quebec City, Laval, and Varennes. Its applied and fundamental research is essential to the advancement of science in Quebec and internationally, playing a key role in the development of tangible solutions to the problems faced by our society.

For more information, please click here

Contacts:
Stéphanie Thibault

514-499-6612

Copyright © INRS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

About the publication

Related News Press

Chemistry

Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project