Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Solvents save steps in solar cell manufacturing

Fullerenes appear as small silver spheres spread consistently throughout a network of small molecules, or polymers, in this schematic illustration of the morphology of a BHJ film with solvent additives.
CREDIT: Oak Ridge National Laboratory
Fullerenes appear as small silver spheres spread consistently throughout a network of small molecules, or polymers, in this schematic illustration of the morphology of a BHJ film with solvent additives.

CREDIT: Oak Ridge National Laboratory

Abstract:
Advances in ultrathin films have made solar panels and semiconductor devices more efficient and less costly, and researchers at the Department of Energy's Oak Ridge National Laboratory say they've found a way to manufacture the films more easily, too.

Solvents save steps in solar cell manufacturing

Oak Ridge, TN | Posted on October 20th, 2015

Typically the films--used by organic bulk heterojunction solar cells, or BHJs, to convert solar energy into electricity--are created in a solution by mixing together conjugated polymers and fullerenes, soccer ball-like carbon molecules also known as buckyballs.

Next, the mixture is spin cast on a rotating substrate to ensure uniformity, then sent to post-processing to be annealed. Annealing the material--heating then cooling it--reduces the material's hardness while increasing its toughness, which makes it easier to work with.

Pliability makes BHJs more appealing than their more costly crystalline silicon counterparts, but the annealing process is time consuming.

Now ORNL researchers say a simple solvent may make thermal annealing a thing of the past.

In a collaboration between ORNL's Spallation Neutron Source (SNS) and the Center for Nanophase Materials Sciences (CNMS)--both DOE Office of Science User Facilities--postdoctoral researcher Nuradhika Herath led a team of neutron and materials scientists in a study of the morphology, or structure, of BHJ films.

"Optimizing a film's morphology is the key to improving device performance," Herath said. "What we want to find out is the relationship between the blend structures and photovoltaic performance." Finding ways to tune the film's morphology is as important as answering why certain film morphologies are more favorable than others, she added.

Researchers compared thermal annealing with a method that adds a small amount of solvent that aids in dissolving the fullerenes within the blend and helps to make the film's structure more uniform.

The idea is to get the most uniform mixture of light absorbing molecules (e.g., polymers or other molecules) and fullerenes throughout the film. If the mixture is not uniform, clusters form and cause passing electrons to get absorbed, weakening the film's ability to transport electrical current, which in turn decreases device performance.

Because the films are typically about 100 nanometers thick (for comparison, a human hair is about 75,000 nanometers in diameter) and the depth profile of the composition is highly complex, special instruments are needed to measure the material's morphology. For this, researchers turned to neutron scattering.

After mixing and spin casting two different samples at CNMS--one annealed, the other with solvent additive--the team put both films under the eye of SNS's Magnetism Reflectometer (MR), beam line 4A. MR provided them with an accurate depiction of the structural profiles, which revealed exactly how the polymers and fullerenes were arranging themselves throughout both films. The difference between them was evident.

Whereas the annealed sample's morphology clearly showed significant separation between the polymers and fullerenes, the sample containing the solvent additive was remarkably consistent throughout and performed better.

"The reason is that when we use a solvent instead of annealing, the sample dries very slowly, so there is enough time for the system to become fully optimized," said MR Lead Instrument Scientist Valeria Lauter. "We see that additional annealing is not necessary because, in a sense, the system is already as perfect as it can be."

Neutron reflectometry is a powerful method because it effectively makes many materials transparent, Lauter explained. Instead of searching for the key that opens the metaphorical black box that prevents researchers from seeing a material's atomic structure, she says, neutrons simply go straight through it, giving researchers both qualitative and quantitative information about their problem.

Not only will the information obtained from neutrons help increase the efficiency of solar cells' performance, but they will also streamline the process of manufacturing them. Using solvent additives to optimize the morphology of BHJ films could negate the need to invest more into a less effective process--a savings of time, money, and resources.

"In addition, optimization of photovoltaic properties provides information to manufacture solar cells with fully controlled morphology and device performance," Herath said. "These findings will aid in developing 'ideal' photovoltaics, which gets us one step closer to producing commercialized devices."

###

The researchers discuss their findings in the journal Scientific Reports, 5, 13407 (2015).

Herath's coauthors include Sanjib Das and Gong Gu from the University of Tennessee; and ORNL's Jong K. Keum, Jiahua Zhu, Rajeev Kumar, Ilia N. Ivanov, Bobby G. Sumpter, James F. Browning, Kai Xiao, Pooran Joshi, Sean Smith and Valeria Lauter.

This research used resources of the Spallation Neutron Source and the Center for Nanophase Materials Sciences at ORNL, which are DOE Office of Science User Facilities.

####

For more information, please click here

Contacts:
Jeremy Rumsey

865-576-2038

Copyright © DOE/Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Thin films

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Laboratories

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project