Home > Press > U researchers create light emitting diodes from food and beverage waste: Development can offer an environmentally sustainable alternative to current methods
A small light emitting diode (LED) fabricated by carbon dots (CDs). CREDIT: Prashant Sarswat |
Abstract:
Most Christmas lights, DVD players, televisions and flashlights have one thing in common: they're made with light emitting diodes (LEDs). LEDs are widely used for a variety of applications and have been a popular, more efficient alternative to fluorescent and incandescent bulbs for the past few decades. Two University of Utah researchers have now found a way to create LEDs from food and beverage waste. In addition to utilizing food and beverage waste that would otherwise decompose and be of no use, this development can also reduce potentially harmful waste from LEDs generally made from toxic elements.
LEDs are a type of device that can efficiently convert electricity to light. Unlike fluorescent and incandescent bulbs, which direct 80% of the energy consumed to producing heat, LEDs direct 80% of the energy consumed to producing light. This is made possible by the fact that LEDs do not require a filament to be heated as incandescent and fluorescent bulbs do.
LEDs can be produced by quantum dots, or tiny crystals that have luminescent properties. Quantum dots (QDs) can be made with numerous materials, some of which are rare and expensive to synthesize, and even potentially harmful to dispose of. Some research over the past 10 years has focused on using carbon dots (CDs), or simply QDs made of carbon, to create LEDs instead.
Compared to other types of quantum dots, CDs have lower toxicity and better biocompatibility, meaning they can be used in a broader variety of applications.
U Metallurgical Engineering Research Assistant Professor Prashant Sarswat and Professor Michael Free, over the past year and a half, have successfully turned food waste such as discarded pieces of tortilla into CDs, and subsequently, LEDs.
The results were recently published in Physical Chemistry Chemical Physics, a journal of the Royal Society of Chemistry.
From bread to bulb
To synthesize waste into CDs, Sarswat and Free employed a solvothermal synthesis, or one in which the waste was placed into a solvent under pressure and high temperature until CDs were formed. In this experiment, the researchers used soft drinks and pieces of bread and tortilla.
The food and beverage waste were each placed in a solvent and heated both directly and indirectly for anywhere from 30 to 90 minutes.
After successfully finding traces of CDs from the synthesis, Sarswat and Free proceeded to illuminate the CDs to monitor their formation and color.
The pair also employed four other tests, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, Raman and AFM imaging to determine the CDs' various optical and material properties.
"Synthesizing and characterizing CDs derived from waste is a very challenging task. We essentially have to determine the size of dots which are only 20 nanometers or smaller in diameter, so we have to run multiple tests to be sure CDs are present and to determine what optical properties they possess," said Sarswat.
For comparison, a human hair is around 75,000 nanometers in diameter.
The various tests Sarswat and Free ran first measured the size of the CDs, which correlates with the intensity of the dots' color and brightness. The tests then determined which carbon source produced the best CDs. For example, sucrose and D-fructose dissolved in soft drinks were found to be the most effective sources for production of CDs.
Finally, the CDs were suspended in epoxy resins, heated and hardened to solidify the CDs for practical use in LEDs.
An environmentally sustainable alternative
Currently, one of the most common sources of QDs is cadmium selenide, a compound comprised of a two toxic elements. The ability to create QDs in the form of CDs from food and beverage waste would eliminate the need for concern over toxic waste, as the food and beverages themselves are not toxic.
"QDs derived from food and beverage waste are not based on common toxic elements such as cadmium and selenium, which makes their processing and disposal more environmentally friendly than it is for most other QDs. In addition, the use of food and beverage waste as the starting material for QDs allows for reduced waste and cost to produce a useful material," said Free.
In addition to being toxic when broken down, cadmium selenide is also expensive--one website listed a price of $529 for 25 ml of the compound.
"With food and beverage waste that are already there, our starting material is much less expensive. In fact, it's essentially free," said Sarswat.
According to a report from the US Department of Agriculture, roughly 31% of food produced in 2014 was not available for human consumption. To be able to use this waste for creating LEDs which are widely used in a number of technologies would be an environmentally sustainable approach.
Looking forward, Sarswat and Free hope to continue studying the LEDs produced from food and beverage waste for stability and long term performance.
"The ultimate goal is to do this on a mass scale and to use these LEDs in everyday devices. To successfully make use of waste that already exists, that's the end goal," said Sarswat.
####
For more information, please click here
Contacts:
Chanapa Tantibanchachai
801-585-3093
Copyright © University of Utah
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Discoveries
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||