Home > Press > Ultrafast uncoupled magnetism in atoms: A new step towards computers of the future
![]() |
Abstract:
Future computers will require a magnetic material which can be manipulated ultra-rapidly by breaking the strong magnetic coupling. A study has been published in Nature Communications today in which Swedish and German scientists demonstrate that even the strongest magnetic coupling may be broken within picoseconds (10-12 s). This will open up an exciting new area of research.
The element gadolinium is named after the Uppsala chemist Johan Gadolin who discovered the first rare-earth metal yttrium in the late 1700s. Gadolinium is in the same class of elements and it has unique magnetic properties which make it especially interesting for magnetic data storage. Its most useful property is that it has the greatest spin magnetic moment of any element since there are two different magnetic moments on every atom. These spin moments are coupled in parallel so strongly that no existing magnetic field on earth could break the coupling.
An international collaboration between Karel Carva and Peter Oppeneer, two physicists from Uppsala University, and researchers from the Free University Berlin and Konstanz University in Germany has shown that it is possible to break the coupling between the spin moments. Researchers in Berlin used light pulses shorter than picoseconds to excite metallic gadolinium and then monitored the spin dynamics of both spin moments with ultra-short, high-energy x-ray flashes. The spin dynamics they revealed showed that the strong coupling was broken within picoseconds (10-12 s) and it remained uncoupled for almost 100 picoseconds. The theoretical calculations of the Uppsala researchers provided a detailed explanation of how this fundamental magnetic interaction can be overcome.
"Not too long ago it became clear that the weaker coupling between spin moments on different atoms of a material can be broken. We've now shown that even the stronger spin magnetic coupling within an individual atom can be overpowered. This provides new opportunities to manipulate magnetic materials and opens new paths to the data storage of the future," says professor Peter Oppeneer.
####
For more information, please click here
Contacts:
Peter Oppeneer
46-070-960-4016
Copyright © Uppsala University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
Magnetism/Magnons
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Chip Technology
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Memory Technology
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||