Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Penn researchers discover new chiral property of silicon, with photonic applications

By encoding information in photons via their spin, photonic computers could be orders of magnitude faster and efficient than their current-day counterparts. Likewise, encoding information in the spin of electrons, rather than just their quantity, could make spintronic computers with similar advantages. University of Pennsylvania engineers and physicists have now discovered a property of silicon that combines aspects of all of these desirable qualities. In their experimental set-up, pictured here, they a silicon-based photonic device that is sensitive to the spin of the photons in a laser shined on one of its electrodes. Light that is polarized clockwise causes current to flow in one direction, while counter-clockwise polarized light makes it flow in the other direction.
CREDIT: University of Pennsylvania
By encoding information in photons via their spin, photonic computers could be orders of magnitude faster and efficient than their current-day counterparts. Likewise, encoding information in the spin of electrons, rather than just their quantity, could make spintronic computers with similar advantages. University of Pennsylvania engineers and physicists have now discovered a property of silicon that combines aspects of all of these desirable qualities. In their experimental set-up, pictured here, they a silicon-based photonic device that is sensitive to the spin of the photons in a laser shined on one of its electrodes. Light that is polarized clockwise causes current to flow in one direction, while counter-clockwise polarized light makes it flow in the other direction.

CREDIT: University of Pennsylvania

Abstract:
By encoding information in photons via their spin, "photonic" computers could be orders of magnitude faster and efficient than their current-day counterparts. Likewise, encoding information in the spin of electrons, rather than just their quantity, could make "spintronic" computers with similar advantages.

Penn researchers discover new chiral property of silicon, with photonic applications

Philadelphia, PA | Posted on July 25th, 2015

University of Pennsylvania engineers and physicists have now discovered a property of silicon that combines aspects of all of these desirable qualities.

In a study published in Science, they have demonstrated a silicon-based photonic device that is sensitive to the spin of the photons in a laser shined on one of its electrodes. Light that is polarized clockwise causes current to flow in one direction, while counter-clockwise polarized light makes it flow in the other direction.

This property was hiding in plain sight; it is a function of the geometric relationship between the pattern of atoms on the surface of silicon nanowires and how electrodes placed on those wires intersect them. The interaction between the semiconducting silicon and the metallic electrodes produces an electric field at an angle that breaks the mirror symmetry that silicon typically exhibits. This chiral property is what sends electrons in one direction or the other down the nanowire depending on the polarity of the light that hits the electrodes.

The study was led by Ritesh Agarwal, a professor in the Department of Materials Science and Engineering in Penn's School of Engineering and Applied Science, and Sajal Dhara, a postdoctoral researcher in Agarwal's lab. They collaborated with Eugene Mele, a professor in the Department of Physics and Astronomy in Penn's School of Arts & Sciences.

"Whenever you change a symmetry, you can do new things," said Agarwal. "In this case, we have demonstrated how to make a photodetector sensitive to a photon's spin. All photonic computers need photodetectors, but they currently only use the quantity of photons to encode information. This sensitivity to photon spin would be an extra degree of freedom, meaning you could encode additional information on each photon.

"Typically, materials with heavy elements show this property due to their spins strongly interacting with electron's orbital motion, but we have demonstrated this effect on the surface of silicon, originating only from the electron's orbital motion"

Agarwal and Dhara reached out to Mele due to his work on topological insulators. He, along with fellow Penn physicist Charles Kane, laid the foundation for this new a class of materials, which are electrical insulators on their interiors but conduct electricity on their surfaces.

Agarwal's group was working on various materials that exhibit topological effects, but as a check on their methods, Mele suggested trying their experiments with silicon as well. As a light, highly symmetric material, silicon was not thought to be able to exhibit these properties.

"We expected the control experiment to give a null result, instead we discovered something new about nanomaterials," Mele said.

Silicon is the heart of computer industry, so finding ways of producing these types of effects in that element is preferable to learning how to work with the heavier, rarer elements that naturally exhibit them.

Once it was clear that silicon was capable of having chiral properties, the researchers set out to find out the atomic mechanisms behind it.

"The effect was coming from the surface of the nanowire," Dhara said. "The way most silicon nanowires are grown, the atoms are bound in zigzag chains that go along the surface, not down into the wire."

These zigzag patterns are such that placing a mirror on top of them would produce an image that could be superimposed on the original. This is why silicon is not intrinsically chiral. However, when metal electrodes are placed on the wire in the typical perpendicular fashion, they intersect the direction of the chains at a slight angle.

"When you have any metal and any semiconductor in contact, you'll get an electric field at the interface, and it's this field that is breaking the mirror symmetry in the silicon chains," Dhara said.

Because the direction of the electric field does not exactly match the direction of the zigzag chains, there are angles where the silicon is asymmetric. This means it can exhibit chiral properties. Shining a circularly polarized laser at the point on the nanowire where metal and semiconductor meet produces a current, and the spin of the photons in that laser determines the direction of the current's flow.

Dhara and Agarwal are currently working on ways to get planar silicon to exhibit these properties using the same mechanism.

###

The research was supported by the U.S. Army Research Office, the Department of Energy and the National Science Foundation through Penn's Materials Research Science and Engineering Center.

####

For more information, please click here

Contacts:
Evan Lerner

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Photonics/Optics/Lasers

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project