Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Team led by UCLA and Columbia engineers uses disorder to control light on a nanoscale: Findings could lead to more precise information transfer in computer chips and other applications

Nicoletta Barolini
Artist’s depiction of light traveling through a photonic crystal superlattice, where holes have been randomly patterned. The result is a more narrow beam of light.
Nicoletta Barolini Artist’s depiction of light traveling through a photonic crystal superlattice, where holes have been randomly patterned. The result is a more narrow beam of light.

Abstract:
A breakthrough by a team of researchers from UCLA, Columbia University and other institutions could lead to the more precise transfer of information in computer chips, as well as new types of optical materials for light emission and lasers.

Team led by UCLA and Columbia engineers uses disorder to control light on a nanoscale: Findings could lead to more precise information transfer in computer chips and other applications

Los Angeles, CA | Posted on February 2nd, 2015

The researchers were able to control light at tiny lengths around 500 nanometers -- smaller than the light's own wavelength -- by using random crystal lattice structures to counteract light diffraction. The discovery could begin a new phase in laser collimation -- the science of keeping lasers precise and narrow instead of spreading out.

The study's principal investigator was Chee Wei Wong, associate professor of electrical engineering at the UCLA Henry Samueli School of Engineering and Applied Science.

Think of shining a flashlight against a wall. As the light moves from the flashlight and approaches the wall, it spreads out, a phenomenon called diffraction. The farther away the light source is held from the wall, the more the beam diffracts before it reaches the wall.

The same phenomenon also happens on a scale so small that distances are measured in nanometers -- a unit equal to one-billionth of a meter. For example, light could be used to carry information in computer chips and optical fibers. But when diffraction occurs, the transfer of data isn't as clean or precise as it could be.

Technology that prevents diffraction and more precisely controls the light used to transfer data could therefore lead to advances in optical communications, which would enable optical signal processing to overcome physical limitations in current electronics and could enable engineers to create improved optical fibers for use in biomedicine.

To control light on the nanoscale, the researchers used a photonic crystal superlattice, a lattice structure made of crystals that allows light through. The lattice was a disorderly pattern, with thousands of nanoscale heptagonal, square and triangular holes. These holes, each smaller than the wavelength of the light traveling through the structure, serve as guideposts for a beam of light.

Engineers had understood previously that uniformly patterned holes can control the spatial diffraction somewhat. But the researchers found in the new study that the structures with the most disorderly patterns were best able to trap and collimate the beam into a narrow path, and that the structure worked over a broad part of the infrared spectrum.

The study's lead author was Pin-Chun Hsieh, who was advised by Wong during his doctoral studies at Columbia University's Fu Foundation School of Engineering and Applied Science.

The effect of disorder, known as Anderson localization, was first proposed in 1958 by Nobel laureate Philip Anderson. It is the physical phenomenon that explains the conductance of electrons and waves in condensed matter physics.

The new study was the first to examine transverse Anderson localization in a chip-scale photonic crystal media. It was published online today by Nature Physics.

"This study allows us to validate the theory of Anderson localization in chip-scale photonics, through engineered randomness in an otherwise periodic structure," Wong said. "What Pin-Chun has observed provides a new path in controlling light propagation at the wavelength scale, that is, delivering structure arising out of randomness."

Hsieh, who also is chairman and majority owner of Taiwan-based Quantumstone Research, said the findings are completely counterintuitive because one might think that disorder in the structures would lead the light to spread out more. "This effect, based on intuition gained from electronic systems, where introduced impurities can turn an insulator into a semiconductor, shows unequivocally that controlling disorder can arrest transverse transport, and really reduce the spreading of light."

The numerical simulation was performed at University College London, and the sample fabrication was carried out at the Brookhaven National Laboratory in New York and at National Cheng Kung University in Taiwan.

###

The research was supported primarily by a grant from the U.S. Office of Naval Research. Additional support was provided by the National Science Foundation, the Department of Energy and the government of the United Kingdom. Hsieh is supported by a scholarship from Taiwan's Department of Education.

####

For more information, please click here

Contacts:
Matthew Chin

310-206-0680

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project