Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Race of the electrons: Laser pulses can be used to track the motion of electrons in metals with attosecond precision. This helps to understand and possibly improve important electronic effects.

In this image, a laser beam removes electrons from a layered metal structure. Attosecond technology allows scientists to measure time delays between electrons from different metal layers.
CREDIT: Vienna University of Technology
In this image, a laser beam removes electrons from a layered metal structure. Attosecond technology allows scientists to measure time delays between electrons from different metal layers.

CREDIT: Vienna University of Technology

Abstract:
It is easy to measure electric current. But it is extremely hard to watch the individual electrons which make up this current. Electrons race through the metal with a speed of several million meters per second, and the distance they have to cover between two adjacent atoms is very small. This means that tiny time intervals have to be resolved in order to watch the electrons dashing through the metal.

Race of the electrons: Laser pulses can be used to track the motion of electrons in metals with attosecond precision. This helps to understand and possibly improve important electronic effects.

Vienna, Austria | Posted on January 14th, 2015

Measurements in Garching (Germany) and theoretical calculations at the Vienna University of Technology (Austria) have now made this possible. As it turns out, the motion of the electrons in the metal is remarkably similar to ballistic motion in free space. The results have now been published in the journal "Nature".

The Tiny Timescales of the Quantum World

Albert Einstein already explained the "photoelectric effect" in 1905: light transfers energy to an electron, removing it from the metal. This happens so fast that for a long time it seemed impossible to study the time evolution of this process. In recent years, however, attosecond physics has advanced dramatically, so that time resolved analysis of this process has become possible.

An attosecond is a billionth of a billionth of a second (10^-18 seconds). This is approximately the time it takes light to travel the distance from one atom to the next. Using ultrashort laser pulses, time can now be measured with a precision in the attosecond range.

The data which has now been published in "Nature" was measured at the Max Planck Institute for Quantum Optics in Garching, in a collaboration with TU Munich, the Fritz Haber Institute in Berlin, the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg and LMU Munich. At the Vienna University of Technology, theoretical models and large-scale computer simulations have been developed, in order to analyse and interpret the results.

Racing Electrons

"The experiment allows us to watch a race of electrons", says Professor Joachim Burgdörfer (TU Vienna). Two different metals - tungsten and magnesium - are stacked and hit with a laser pulse. Either in the magnesium or in the tungsten layer, the light can remove electrons, which then find their way to the surface. The distance the electrons have to cover is less than a nanometer, but still it is possible to quantify the lead of the electrons from the magnesium layer, arriving shortly before the electrons from the tungsten layer.

The distance of this race can be tuned: one to five atomic layers of magnesium are deposited on tungsten. "The thicker the magnesium layer, the larger the lead of its electrons compared to the electrons coming from the tungsten layer", says Christoph Lemell (TU Vienna). The simple relationship between layer thickness and arrival time shows that the electrons travel through the metal ballistically, on rather undisturbed and straight lines. Complex scattering processes do not play an important role on theses time and length scales.

For precise timing, it is crucial to have a very well defined finish line. For the photo-finish, a second laser was used. It influences the electrons the moment they left the metal, but not before. The laser beam must not penetrate the metal. "Within a distance shorter than the spacing between the metal atoms, the intensity of the laser field changes dramatically", says Georg Wachter (TU Vienna). The field of the laser beam is reduced to almost zero in the outermost layer, whereas right outside the metal the electrons immediately enter a strong laser field. This sharp contrast is the reason these extremely precise time measurements become possible.

The new findings are expected to help with the miniaturization of electronic and photonic elements - and they are another proof for the amazing possibilities of attosecond physics. "This new area of research gives us new methods to develop quantum technologies and study fundamental questions of materials science and electronics", says Joachim Burgdörfer.

####

For more information, please click here

Contacts:
Florian Aigner

0043-158-801-41027

Prof. Christoph Lemell
Institute for Theoretical Physics
Vienna University of Technology
T: +43-1-58801-13612


Dr. Georg Wachter
Institute for Theoretical Physics
Vienna University of Technology
T: +43-1-58801-13630


Prof. Joachim Burgdörfer
Institute for Theoretical Physics
Vienna University of Technologyn

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project