Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers develop novel multiferroic materials and devices integrated with silicon chips

Abstract:
A research team led by North Carolina State University has made two advances in multiferroic materials, including the ability to integrate them on a silicon chip, which will allow the development of new electronic memory devices. The researchers have already created prototypes of the devices and are in the process of testing them.

Researchers develop novel multiferroic materials and devices integrated with silicon chips

Raleigh, NC | Posted on January 13th, 2015

Multiferroic materials have both ferroelectric and ferromagnetic properties.

"These multiferroic materials offer the possibility of switching a material's magnetism with an electric field, or switching its electric polarity with a magnetic field - making them very attractive for use in next-generation, low-power, nonvolatile memory storage devices," says Dr. Jay Narayan, John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and senior author of two papers describing the work.

Researchers had previously known that you could create a multiferroic material by layering barium titanate (BTO), which is ferroelectric, and lanthanum strontium magnese oxide (LSMO), which is ferromagnetic. But these "bilayer" thin films weren't feasible for large-scale use because they could not be integrated on a silicon chip - the constituent elements of the thin films would diffuse into the silicon.

But Narayan's team has advanced the work in two ways. First, by developing a technique to give BTO ferromagnetic properties, making it multiferroic without the need for LSMO; second, by developing buffer layers that can be used to integrate either the multiferroic BTO or the multiferroic BTO/LSMO bilayer film onto a silicon chip.

To make BTO multiferroic, the researchers used a high-power nanosecond pulse laser to create oxygen vacancy-related defects into the material. These defects create ferromagnetic properties in the BTO.

The buffer layers are titanium nitride (TiN) and magnesium oxide (MgO). The TiN is grown as a single crystal on the silicon substrate. The MgO is then grown as a single crystal on the TiN. The BTO, or BTO/LSMO bilayer film, is then deposited on the MgO. The resulting buffer layers allow the multiferroic material to function efficiently without diffusing into the silicon and destroying silicon transistors.

"We've already fabricated prototype memory devices using these integrated, multiferroic materials, and are testing them now," Narayan says. "Then we will begin looking for industry partners to make the transition to manufacturing."

###

The work is described in two papers in the Journal of Applied Physics: "Magnetic properties of BaTiO3/La0.7Sr0.3MnO3 thin films integrated on Si(100)," which was published Dec. 10, 2014; and "Ferroelectric and ferromagnetic properties in BaTiO3 thin films on Si (100)," which was published September 4, 2014. Lead author on both papers was Dr. Srinivasa Singamaneni, a postdoctoral researcher at NC State. Both papers were co-authored by Dr. John Prater, of the U.S. Army Research Office (ARO) and NC State. The December paper was co-authored by Dr. Wu Fan, a former NC State Ph.D. student who is now a postdoctoral researcher at Princeton. The September paper was co-authored by Sandhyarani Punugupati, a Ph.D. student at NC State, and Dr. Frank Hunte, an assistant professor of materials science and engineering at NC State.

The research was supported by the ARO under grant number W911NF-04-D-0003.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project