Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Reduction of Particle Size Modifies Magnetic Properties of Materials

Abstract:
Iranian researchers from Isfahan University of Technology modified the properties of a magnetic material by using nanotechnology, which has many applications in various industries.

Reduction of Particle Size Modifies Magnetic Properties of Materials

Tehran, Iran | Posted on June 17th, 2014

Barium ferrite is a magnetic material that is used in the production of permanent magnets, magnetic sorption environment and microwave adsorbents. Size, structure, and magnetic properties of the material highly depend on the production conditions and the nature of the raw material used in the production process.

According to the supervisor of the research, Dr. Parviz Kameli, effort was made in this research to investigate the produced barium ferrite nanoparticles and the effect of re-cooking temperature on magnetic properties of the final product.

In the present studies, various methods, including sol-gel or hydrothermal methods, have usually been used for the production of barium ferrite nanoparticles. But in this research, the nanoparticles have been produced through co-precipitation method in the presence of high concentration of hydroxide ions and low process temperature.

Taking into consideration the low temperature of the production process, reduction in energy consumption and increase in the production rate of the final product are among the important results of the research.

FE-SEM images taken from the structure of the product show that the re-cooking temperature is an important parameter in controlling the size of particle diameter from nanometric to micrometric scale, to the extent that as temperature increases from 90 to 1200°C, the size of nanoparticles changes from a few nanometers to micrometers.

On the other hand, magnetic properties of the nanoparticles increase as the re-cooking temperature increases. In this report, the best temperature was reported to be 900°C to obtain magnetic properties and the optimum particle size.

Results of the research have been published in Ceramics International, vol. 40, issue 5, January 2014, pp. 7279-7284.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Industrial

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project