Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Leti to Demonstrate Wireless High Data Rate Li-Fi Prototype at Light + Building 2014 in Frankfurt

Abstract:
CEA-Leti will demonstrate its new prototype for wireless high data rate Li-Fi (light fidelity) transmission at Light + Building 2014 in Frankfurt, Germany, March 30-April 4. The technology employs the high-frequency modulation capabilities of light-emitting diode (LED) engines used in commercial lighting. It achieves throughputs of up to 10Mb/s at a range of three meters, suitable for HD video streaming or Internet browsing, using light power of less than 1,000 lumens and with direct or even indirect lighting.

Leti to Demonstrate Wireless High Data Rate Li-Fi Prototype at Light + Building 2014 in Frankfurt

Grenoble, France | Posted on March 29th, 2014

With this first proof of concept and its expertise in RF communications, Leti forecasts data transmission rates in excess of 100Mb/s with traditional lighting based on LED lamps using this technology approach and without altering the high-performance lighting characteristics.

Visible light communications (VLC), or Li-Fi, have gained significant momentum in recent years, primarily because of expectations that LEDs will become predominant in the lighting market. Indeed, as part of its Ecodesign process, the European Union established a schedule for LED lighting penetration (regulation No. 1194/2012). Halogen lamps will be phased out and replaced by LED lighting by Sept. 1, 2016, in 30 European countries.

Moreover, because LEDs can be modulated at very high frequencies and their oscillations are invisible to humans, they permit information transmission at very high data rates.

Other technical and market factors also are increasing interest in data transmission through lighting. These include crowding of the conventional radiofrequency (RF) spectrum, the mobile data-traffic explosion in cellular networks, and the need for wireless data transmission without electromagnetic field (EMF) interference.

The demonstration is part of a Leti project begun in 2013 to achieve a high data rate Li-Fi prototype by applying Leti's expertise in digital communications, hardware prototyping and solid-state lighting.

The optical system consists of an A19 lamp based on LEDs at the transmitter and an avalanche photodiode at the receiver. The digital communication component is implemented on a proprietary and reconfigurable platform that carries out a flexible multi-carrier modulation.

Leti, which is demonstrating the Li-Fi capability to show a promising alternative to conventional RF wireless communications, is also focusing on component optimization to offer a bidirectional link.

The prototype was demonstrated at Forum LED Europe in Paris in 2013 and at CES in Las Vegas earlier this year.

####

About CEA-Leti
By creating innovation and transferring it to industry, Leti is the bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. Backed by its portfolio of 2,200 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched more than 50 startups. Its 8,000m² of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. Leti’s staff of more than 1,700 includes 200 assignees from partner companies. Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo.

For more information, please click here

Contacts:
CEA-Leti
+33 4 38 78 02 26


Agency
+33 6 64 52 81 10

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Display technology/LEDs/SS Lighting/OLEDs

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Wireless/telecommunications/RF/Antennas/Microwaves

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Events/Classes

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project