Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers see Kelvin wave on quantum 'tornado' for first time

Illustration of Kelvin waves on retracting quantized vortices after they met, crossed and exchanged tails -- a process called reconnection. A new study provides visual evidence that after the vortexes snap away from each other, they develop ripples called "Kelvin waves" to quickly get rid of the energy caused by the connection and relax the system.

Credit: Enrico Fonda
Illustration of Kelvin waves on retracting quantized vortices after they met, crossed and exchanged tails -- a process called reconnection. A new study provides visual evidence that after the vortexes snap away from each other, they develop ripples called "Kelvin waves" to quickly get rid of the energy caused by the connection and relax the system.

Credit: Enrico Fonda

Abstract:
Draining the water from a bathtub causes a spinning tornado to appear. The downward flow of water into the drain causes the water to rotate, and as the rotation speeds up, a vortex forms that obeys the laws of classical mechanics. However, if the water is extremely cold liquid helium, the fluid will swirl around an invisible line to form a vortex that obeys the laws of quantum mechanics. Sometimes, two of these quantum tornadoes flex into curved lines, cross over one another to form a letter X shape, swap ends, and then violently retract from one another—a process called reconnection.

Researchers see Kelvin wave on quantum 'tornado' for first time

College Park, MD | Posted on March 24th, 2014

Computer simulations have suggested that after the vortexes snap away from each other, they develop ripples called "Kelvin waves" to quickly get rid of the energy caused by the connection and relax the system. However, the existence of these waves had never been experimentally proven.

Now, for the first time, researchers provide visual evidence confirming that the reconnection of quantum vortexes launches Kelvin waves. The study, which was conducted at the University of Maryland, will be published the week of March 24, 2014 in the online early edition of the journal Proceedings of the National Academy of Sciences. The research was supported by the National Science Foundation.

"We weren't surprised to see the Kelvin waves on the quantum vortex, but we were excited to see them because they had never been seen before," said Daniel Lathrop, a UMD physics professor. "Seeing the Kelvin waves provided the first experimental evidence that previous theories predicting they would be launched from vortex reconnection were correct."

Understanding turbulence in quantum fluids, such as ultracold liquid helium, may offer clues to neutron stars, trapped atom systems and superconductors. Superconductors, which are materials that conduct electricity without resistance below certain temperatures, develop quantized vortices. Understanding the behavior of the vortices may help researchers develop superconductors that remain superconducting at higher current densities.

Physicists Richard Feynman and Lars Onsager predicted the existence of quantum vortices more than a half-century ago. However, no one had seen quantum vortices until 2006. In Lathrop's laboratory at UMD, researchers prepared a cylinder of supercold helium—at 2 degrees Celsius above absolute zero—injected with frozen tracer particles made from atmospheric air and helium gases. When they shined a laser into the cylinder, the researchers saw the particles trapped on the vortices like dew drops on a spider web.

"Kelvin waves on quantized vortices had been predicted, but the experiments were challenging because we had to conduct them at lower temperatures than our previous experiments," explained Lathrop.

Since 2006, the researchers have used the same technique to further examine quantum vortexes. During an experiment in February 2012, they witnessed a unique reconnection event. One vortex reconnected with another and a wave propagated down the vortex. To quantitatively study the wave's motion, the researchers tracked the position of the particles on the vortex. The resulting waveforms agreed generally with theories of Kelvin waves propagating from quantum vortexes.

"These first observations of Kelvin waves will surely lead to exciting new experiments that push the limits of our knowledge of these exotic quantum motions," added Lathrop.

In the future, Lathrop plans to use florescent nanoparticles to investigate what happens near the transition to the superfluid state.

Lathrop conducted the current study with David Meichle, a UMD physics graduate student; Enrico Fonda, who was a research scholar at UMD and graduate student at the University of Trieste when the study was performed and is now a postdoctoral researcher at New York University; Nicholas Ouellette, who was a visiting assistant professor at UMD when the study was performed and is now an associate professor in mechanical engineering & materials science at Yale University; and Sahand Hormoz, a postdoctoral researcher at the University of California, Santa Barbara's Kavli Institute for Theoretical Physics.

###

This research was supported by the National Science Foundation (NSF) under Award No. DMR-0906109. The content of this article does not necessarily reflect the views of the NSF.

Writer: Abby Robinson

The research paper, "Direct observation of Kelvin waves excited by quantized vortex reconnections," Enrico Fonda, David P. Meichle, Nicholas T. Ouellette, Sahand Hormoz, and Daniel P. Lathrop, will be published the week of March 24, 2014 in the online early edition of the journal Proceedings of the National Academy of Sciences.

####

For more information, please click here

Contacts:
Abby Robinson

301-405-5845

Heather Dewar
301-405-9267

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video: Reconnection Causes Kelvin Waves on Quantum Vortices

Daniel Lathrop Lab:

Lathrop Lab YouTube Channel:

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project