Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Heat-Based Technique Offers New Way to Measure Microscopic Particles

Abstract:
"A Microfluidic Device for Thermal Particle Detection"

Authors: Ashwin Kumar Vutha, Rensselaer Polytechnic Institute; Benyamin Davaji and Chung Hoon Lee, Marquette University; and Glenn M. Walker, North Carolina State University and the University of North Carolina at Chapel Hill

Published: online March 11, Microfluidics and Nanofluidics

DOI: 10.1007/s10404-014-1369-z

Abstract: We demonstrate the use of heat to count microscopic particles. A Thermal Particle Detector (TPD) was fabricated by combining a 500 nm thick silicon nitride membrane containing a thin-film resistive temperature detector (RTD) with a silicone elastomer microchannel. Particles with diameters of 90 [micrometers] and 200 [micrometers] created relative temperature changes of 0.11 K and -0.44 K, respectively, as they flowed by the sensor. A first-order lumped thermal model was developed to predict the temperature changes. Multiple particles were counted in series to demonstrate the utility of the TPD as a particle counter.

Heat-Based Technique Offers New Way to Measure Microscopic Particles

Raleigh, NC | Posted on March 13th, 2014

Researchers have developed a new heat-based technique for counting and measuring the size of microscopic particles. The technique is less expensive than light-based techniques and can be used on a wider array of materials than electricity-based techniques. The research was performed by faculty at North Carolina State University, the University of North Carolina at Chapel Hill and Marquette University.

"We launched this study purely out of curiosity, but it's developed into a technique that has significant advantages over existing methods for counting and measuring the size of microscopic objects," says Dr. Glenn Walker, senior author of a paper on the work and an associate professor in the joint biomedical engineering program at NC State and UNC-Chapel Hill.

Particle counters are used in a wide variety of industries. For example, physicians use them to count and identify blood and cancer cells while ink manufacturers use them to ensure consistent toner quality. The new thermal technique could also lead to new applications.

The researchers built a device in which an extremely narrow plastic tube rests on a silicon substrate. A wire is connected to a single point beneath the tube. An extremely small current is run through the wire, both generating heat that radiates into the tube and measuring the temperature of the tube and its contents.

When a solution containing microscopic particles is injected into the tube it flows past the wire and the heated area. When the particles pass through this thermal zone they alter the electrical resistance of the wire. This is because the thermal conductivity of a particle will either increase or decrease the temperature in that part of the tube, causing the electrical resistance to go up or down.

Since the researchers know the flow rate of the solution through the tube, they can measure the length of time that the electrical resistance was changed and calculate the size of the objects suspended in the solution.

"So far, we've tested this method effectively with objects in the 200 micron to 90 micron range - at the larger end of the spectrum commonly measured by commercial particle counters," Walker says. "But in theory we'll be able to get down to the 10 micron range and measure individual cells. We're working on that now."

The researchers are also exploring ways to use the technique to detect unwelcome metal particles resulting from machine wear in mechanical devices.

"There are three advantages to our technique," Walker says. "It's simple, it's inexpensive, and it can monitor any kind of particle. Flow cytometry - which uses light - is both expensive and complex, while Coulter counters - which use electricity - only work on objects that don't conduct electricity but are suspended in a solution that is conductive."

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Dr. Glenn Walker
919.513.4390

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

Microfluidics/Nanofluidics

Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Imaging

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Tools

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project