Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researcher proves mass is important at the nano-scale, matters in calculations and measurements

Alan Bowling, assistant professor of mechanical and aerospace engineering
Alan Bowling, assistant professor of mechanical and aerospace engineering

Abstract:
A UT Arlington engineering professor has proven that the effect of mass is important, can be measured and has a significant impact on any calculations and measurements at the sub-micrometer scale.

Researcher proves mass is important at the nano-scale, matters in calculations and measurements

Arlington, TX | Posted on January 22nd, 2014

The findings help to better understand movement of nano-sized objects in fluid environments that can be characterized by a low Reynolds number, which often occurs in biological systems. The unconventional results are consistent with Newton's Second Law of Motion, a well-established law of physics, and imply that mass should be included in the dynamic model of these nano-systems. The most widely accepted models omit mass at that scale.

Alan Bowling, an assistant professor of mechanical and aerospace engineering, collaborated with Samarendra Mohanty, an assistant physics professor, and doctoral students Mahdi Haghshenas-Jaryani, Bryan Black and Sarvenaz Ghaffari, as well as graduate student James Drake to make the discovery.

A key advantage of the new model is that it can be used to build computer simulations of nano-sized objects that have drastically reduced run times as compared to a conventional model based on Newton's second law. These conventional models have run times of days, weeks, months and years while the new model requires only seconds or minutes to run.

In the past, researchers attempted to address the long run time by omitting the mass terms in the model. This resulted in faster run times but, paradoxically, violated Newton's second law upon which the conventional model was based. The remedy for this paradox was to argue that mass was unimportant at the nano-scale.

However, the new model retains mass, and predicts unexpected motion of nano-sized objects in a fluid that has been experimentally observed. The new model also runs much faster than both the conventional and massless models.

It is expected that this new model will significantly accelerate research involving small-scale phenomena.

Research areas that Bowling and collaborators at UT Arlington are currently investigating include cell migration, protein function, bionic medical devices and nanoparticle suspensions for storing thermal energy. However, the applications for the computer simulation in medicine, biology, and other fields are endless.

Khosrow Behbehani, dean of the College of Engineering, said the team's findings may alter ways of thinking throughout the engineering and scientific worlds.

"The paper is only the beginning for this research," Behbehani said. "I anticipate a high level of interest in the findings. It could transform the way we conduct research in nano-engineering by providing researchers with the ability to study such physical phenomena at such small scale through the model."

The team used optical tweezers previously developed by Mohanty to measure oscillations that occur at the nano scale, thus proving that mass and acceleration must be considered at that level as well.

"We proved it in the lab," Bowling said. "Publication in an accepted journal is the next step in gaining mass acceptance of the idea, which flies in the face of what most people believe now."

The discovery resulted from a 2012 National Science Foundation grant project in which the UT Arlington team investigated a new model for how motor proteins behave in the body. The NSF award was funded through the Early Concept Grants for Exploratory Research, or EAGER program. The grants support exploratory work in its early stages on untested, but potentially transformative, research ideas or approaches.

####

About University of Texas at Arlington
The University of Texas at Arlington is a comprehensive research institution of more than 33,300 students and 2,300 faculty members in the epicenter of North Texas. It is the second largest institution in the University of Texas System. Research expenditures reached almost $78 million last year. Visit www.uta.edu for more information.

For more information, please click here

Contacts:
Herb Booth

817-272-7075

Copyright © University of Texas at Arlington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research is detailed in the paper “Dynamics of Microscopic Objects in Optical Tweezers: Experimental Determination of Underdamped Regime and Numerical Simulation using Multiscale Analysis” and published online by the Journal of Non-Linear Dynamics. The paper is scheduled for publication in the journal’s print version later this year:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project